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Abstract. A new stress potential function is introduced, the non periodic plane problem in one-
dimensional hexagonal piezoelectric quasicrystals is discussed and the physical equation of the
stress-strain relationship in the non periodic plane is constructed. The exact solution of the
straight crack in the periodic direction of the one-dimensional hexagonal piezoelectric
quasicrystal is obtained. As an application, the problem of straight crack perpendicular to the
direction of quasi-periodical in one-dimensional hexagonal piezoelectric quasicrystal with long
and narrow body is solved. When the width of the long body becomes infinitely large, the
Griffith crack solution is obtained. The results show that the stress at the crack tip remains
singularity, which is basically consistent with the crack problem that penetrates along the quasi
periodic direction. When the phonon field and the phase field get to zero, the above analytical
solution degenerates into the fracture problem of isotropic piezoelectric materials, the results
are in agreement with the existing results.

1. Introduction

A quasiperiodic crystal, or quasicrystal, is a structure that is ordered but not periodic. A
quasicrystalline pattern can continuously fill all available space, but it lacks translational symmetry.
While crystals, according to the classical crystallographic restriction theorem, can possess only two,
three, four, and six-fold rotational symmetries, the Bragg diffraction pattern of quasicrystals shows
sharp peaks with other symmetry orders, for instance five-fold.

Shechtman et al'"”’ , firstly discovered the fivefold symmetry in the diffraction pattern of Al-Mn
alloys and claimed that there is a new structure of solid state in nature. Levine and Steinhard named
the new structure order as quasicrystals(QCs) and he was awarded the Nobel Prize in chemistry in
2011. As a new structure of solid matter, QCs have many desirable properties, such as high hardness,
low friction coefficients, low surface energy, low heat-transfer, low adhesion, corrosion resistance and

high wear resistance””' . Recently, scientists have been considering to replace the traditional materials
used to be employed in the aerospace industry with the quasicrystal materials, such as coating surface
of spacecraft’s wings and fuselage, as well as the thermal barrier coating.

Because of the particular structure of QCs, which is sensitive to electrical, thermal, magnetic and
other physical and chemical properties, these properties are essentially different from ordinary crystals

and have been investigated intensively W 2012, Altary and Domeci H , firstly gave the
fundamental equations of piezoelectricity of QCs, which establish the theoretical foundation for the

study of fracture mechanics of piezoelectricity of QCs. Li et al. ") Obtained the 3D fundamental
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solution for 1D hexagonal QCs with piezoelectric effect, and the propagation of cracks may lead to
premature failure of these materials produced during their manufacturing process when QCs are

. . . . . . 9] . .
subjected to mechanical and electrical loadings in service. Yang[ I reviewed the anti-plane shear
problem of two symmetric cracks originating from an elliptical hole in ID hexagonal piezoelectric

QCs. Yu and Guo 0.2 proposed the general solutions of plane problem and addressed complex

variable method in ID hexagonal piezoelectric QCs. Jiang et al. 1221 developed the interaction between a
screw dislocation and a wedge-shaped crack in 1D hexagonal QCs with piezoelectric effect. However,
to date, there has been relatively little research on the fracture problems of 1D hexagonal piezoelectric
QCs in aperiodical plane.

2. Basic equations
We establish Cartesian coordinate system, let the coordinate axis x, is the quasi periodic directions of

1D hexagonal piezoelectric QCs with point group 6 mm and the plane perpendicular to the quasi
periodic direction is the coordinate plane x, —x,, after Ref.[9], the generalized Hooke’s law of
elasticity problem in 1D hexagonal piezoelectric QC are given by
oy, =C8, + 08, +Ci65 + R, — e;1E3
0y = Co&y + Crnyy + Cpaey + R, — €3 E,
03y = Cpagyy + Cpagyy + Crieyy + R0, — €3, E,
0y =0y, =2C,8,, + R0, — ¢ E,
O3 =0y, = 20,85 + Ry, _ellsEl
oy, =0, =2Cgé), 1)
H;, =2R&5 + K, 0, _eIZSEZ
H,, =2Re, + K,0, — € E,
Hy =R (&, +&,)+ R &y + K0, — 6321E3
D, =2e8, + &0+ €, E

Al 2
D, = 2615‘932 tesw,t €, E,

o 1 >
Dy = e, (&, + &5,) +e3,65; +e3,0,+ €35 E;

where &; ,@;,0; and H i (i,j =1,2,3)are the phonon strains, phason strain, the phonon stress and
phason stress, respectively; £ i Dj stand for the electric field and the clectric displacement,
respectively; C,-j ,k;, R stand for the phonon elastic, phason elastic and phonon-phason coupling
modulus, eilj and e; denote piezoelastic constants of the phonon and phason fields, respectively;

€,, and €55 denote the dielectric permittivity.Besides, the geometry equations of 1D hexagonal
piezoelectric QCs are given by

1
&; :E(éjui+8iuj),a)j =0,0
E =-0,¢p (i,j=123)

2)

whereu,, @, ¢ denote the displacement of phonon field and phason field and the electric potential,
respectively.Equilibrium equations in the absence of body forces are given by
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0,0, +0,0,, +0,0, =0

0,0, +0,0,, +0,0,, =0

0,05, + 0,03, + 0,03, =0 3)
0, +0,H,,+0,H;; =0

0,D,+0,D,+0,D, =0

3. Plane elasticity in aperiodical plane

When defects such as cracks and hole, etc parallel to the periodic axis of 1D hexagonal piezoelectric
QCs , the geometric properties of the material will not change in the quasi-periodic direction. If we
take quasi-periodic axis of 1D hexagonal piezoelectric QCs for x, axis, then

o, =0,0w=0,8,0,=0,8,D,=0,0D,=0 (i, j=1,2,3) @)

Substituting Eqs.(4)into Egs.(1)-(3), we get the physical equation in X, — X; plane as follows:

where

_ (5
&y =a,0,, + 4,055 +b Hyy + ¢, D, )
_ (6)
&y =0, +a,05,+b,Hyy +¢,D;
W, =0, + d2H32 + ezDz (8)
Ez =a,,0y + d3H32 + €3D2 ©)
@, =a;0,, +a,05;, +bHy; + ¢, D, (10)

E, =a,0,, +a,0,,+b,Hy; +c,D; (i

2 2 2 1 2 1 2 132
a = KCyy €33 103363653 — R) €5 —Ryep3€5, — Ryesses; + K (e33)
=

A,

12 12 12 2 2
_RR, &; +Re€ + Ry e —Ki(€53)” —KiC3 €53 —C1365,€5
A,

a,

1 2 12 1 2 2
@ = RR) €55 +Rye;.65 + Rie;6;; — K€3,63 — K€y €53 —C1363,€53
- A
1
) 2 1 2 1 2 1 \2
_KiCy €33 585 — Ry €5 —Rie; €5, — Riey e + K, (e5)
A

1
12 1 2 132 1
a. = 3R, €55 +63,65 — 3R €55 —ce565 —Ri(e5;)” + Ryey e,
=
A,
1 2 1 2 1 1 \2
a4 = CuR) €5 +e363,65 — 3R, €55 363,65 —Rie e+ Ry (e3)
o=
A
ke, —c R.e., +c Re, —c, ke —RR.e, + Ree,
_ Ci3Ki633 G363 T il 653 — Gk 6y — I IGE53 T 1, &5
A,
2 1 2 1 2 1 11
_ R —cepKies; — e Ries; ok R — RiRe e
A

_ 252 _ 1 2 _ 2 1
ay =K, €, +(e15) > dl - _(R3 S +elSeIS)’ € = _R3els T K€ 5

7

8
1
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1 2 12 2 1
a,, =-2(R; €, +e;se5).d, =2(c,, €, He;)) e, =2(c, e —esR;)
2 1 2 1 2
a;, =2(Rye;s — Kye5) , dy ==2(c 5 — Reys), e, =2(c,, — Ry)

1 12 12 12
_ Ry, &5 R 0516365 — R, (e31)” = Rycyeys —Cppesses,

b
)
A
132 2 1 2 132
b = CyyCa3 €33 10y (€53)” —(€13)” €55 —2¢365,€3; + ¢55(e33)
| =
A,
1 2 2 1 2 1 1
b = Ry e +(c3) e PR Cpe3) — s — Rycgses — Ry,
=
A
2 1 2 1 1 21
_apRe —cpkie; — Riegses + RRyeys + k16, — Ryey,
=
A
1 2 2 2 21 2
_ KCpey + Riee + RRe — Rycy e — Riey — kg,
L=
A
2 1 2 2 1 1 1
_ CpCyey — Rocyye; — () e + Rejes; + Ryejse;, — Reyse;)
L=
A
2 2 2
_ CpCyk —Cp Ry —(¢3) K+ RR, —RR¢s + Ry,
=
A
R, €, +(e,)’ Ke.—R.e
—_ -3 -1 (57 — 2715 “37I5 - _ 2 1
d, = y €= , € =—Rsejs T K,
A, A,

A, = CpCyk g +C22C33e;1€§3 _szRz2 S33 —022R26;3e;1 _022R26536323 Tk, (6;3 )
_C123K1 S33 1- C123e3lle323 + C13R1R2 S33 +C13R2 (6311)2 + C13Rle;3e323 - C13K1eslle;3
+CRR, €54 _C13Rle;1e;3 - C33R12 €53 —CR, (3;1)2 _R12 (3;3)2 + RIRZe;Ie;
+C13Rzeéle323 - C13Kle;le;3 - C33Rle;16323 + 03k, (6;1)2 + Rleeéle; _R22 (6;1)2

A, =2k, € +cy,( 6125)2 - (R3)2 i _Rsellselzs —2R( 6115)2 K, (6115)2]

The corresponding equilibrium equations in plane X, — X; are

0,05, + 0,0, =0,0,04, + 0,05, =0,0,H;, +0,H;; =0,0,D,+0,D, =0 (12)
The distortion equation of compatibility are
026, + 056, —20,0,6,, =0, 0,E,—0,E, =0, 0,0, — 0,0, =0 (13)

Now three new stress potential functions are introduced as followings
0,=0U, 0,,=05U, 0,,=—0,0,U, H,, =0,V , H,, ==0,V , D,=0W | D,, =-0,W (14)

Where U(x,,x;) , V(x,,x;) , W(x,,x;) are three new stress potential functions introduced.

Equation (14) satisfies the equation (12). Substituting Eq. (14) into Eq. (5)-(9), then substituting the
result into Eq. (13), by simple calculation, we have
LU-LYV—-LW=0 LU-LV-LW=0,LU-LV-LW=0 (15)

where differential operator L, (i =1,2,3,4,5,6,7,8,9) such that
L =a0; +(a, +a,+2a,)050; +a,05,L, = (b +2d,)0,0; +b,0;,
L, =(as+ a10)826§ + aéﬁi L, =(c, + 261)828§ + 0283 ,
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L, =b,05+d,0;, L, = ;05 +e,0;
L, =a,0,0; +a,0, —a,,05, Ly =b,05 +d,03, L, = c,0; +¢,0;
By Eq. (15), we eliminate J and J¥, then we get a partial differential equation as follows:
(LLL,-LLJL,-L,LL,+L,LL +LLL,-LLL) U=0
Which is a partial differential equations of order eight. By literature[15], using four generalized
analytic functions @, (z,) (k =1,2,3,4), the solution of Eq. (17) can be expressed as

(16)

(17)

4
U(x2’x3)=2ReZCDk(Zk)aZk =X, T X (18)
k=1

where Re stand for the real part of the corresponding complex function, t, =a, +if3,

(k=1,2,3,4,i=+/—1) are the characteristic roots of differential equation(17), &,/ are real
constants, which depends on the piezoelectric quasicrystal elasticity only. If the eigenvalue is repeated
root. From Eq.(15) we can obtain
4 4
V(x,,x,)=2Re Y n,®@,(z,), W(xy,x,)=2Re > @, (z,) (19)
k=1 k=1

where

5, = [auu/i1 +(a, +a; +2a, )/u/f 1(c; + ezﬂ/f) —[(a, + alo)ﬂ/f +a,][(c, + zel)ll'lkz +¢,]
k
H(,Uk)
£ = [(b — Zdl):ukz +b,][(as + alo)/u/f +ag]—(by + dz:u/f)[ahu: +(a,+a; + 2a9)ﬂkz]
k
H(,Uk)

H(,uk) = [(b1 - 2d1)lulf + bz ](C3 + ez:ukz) - [(cl + 262)/1/? + a6][b3 + dzlukz]

Substituting Eq. (18)and(19)into Eq.(14) yields

4 4 4
Oy :2Rezﬂ/f¢k(zk)7 O33 = 2Rez¢k(zk) » O3 :_2Rezluk¢)k(zk)
k=1 k=1 =1

(20)

4 4 4
H,, = 2Rez77k1uk¢k(zk) , Hy = _ZReZ(ﬂk(zk) , Dy, = 2RGZ§kﬂk¢k(Zk) s
=1 =1 P

4
Dy, =-2Re) &0p,(z,) 1)
k=1

where ¢,(2,) =0, @,(z,) =D, (z,)
By Eq.(14), the complex representation of boundary conditions can be represented by the

following formula

o,U = 2Rei¢k (z,)=—[ Tds (22)
k=1
o,U = ZReg,ungk (z,)= L T,ds (23)
V= 2Reg’71f¢k (z,)= _JS T,ds (24)
W=2ReY £, (z) = [ Tods (25)
k=1 ’
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Where 7T, and T} are plane stress acting on the boundary, 7, and 7. stand for generalized stress
acting on the phason space and the plane stress acting on electric field separately.

4. The problem of straight cracks in a strip of 1D hexagonal piezoelectric quasicrystal body in
the direction perpendicular to direction of quasi-period

We now discuss a penetrating straight crack, along the periodic direction X, , in a strip of 1D hexagonal
piezoelectric QCs with point 6 mm. Then the geometric properties of the materials will not change in
the periodic direction X,, the problem in the plane perpendicular to periodic direction is also plane
elasticity problem

Fig.1 the Griffith crack in 1D hexagonal piezoelectric QCs strip
As shown in Fig.1, we have the follow boundary conditions:
(26)

12773
H,=71,H, =1,
T,=T,=0  (x|<a,x=0) (27)
In order to obtain the complex potential function in the region in€d, suppose that the Laurent
expansion of function ¢,(z,) is:

o,=P,o,=1,D,=T,D, =T,
{ ,—a<x,<a,x, =0

?.(z,)=Cz, + ZCZ”ZZ +(pf (z,) (28)
where
gD/iU)(é,k) =q,+ Zak] Z;j 29)

C,., C;”and 4, is the undetermined complex constant.
Substituting function ¢, (z,) into Eq.(21), by condition (27) we have
C=0,k=1,23,4;j=2.3, .. (30)

4 4 4
2Re 4;C,=0,2Re)> C,=p,2Re) 1,C, =0
k=1 k=1 k=1

4 4
2Re) u,1,C, =0, 2Re> n,C, =0 31
k=1

k=1

There are 8 real constants in the above equations ReC, , ImC, (k=1,2,3), but there are 7

independent equations only, therefore a constant can be chosen freely. Take Re C; =0
Substituting function ¢, (z,) into Eq.(22)-(25)again, by condition(27)we get

SO (z)+ 00 (z) = =D [z, + 14,2, (32)
k=1 k=1
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4 - 4
Z[ﬂk@? (z)+ ﬂk¢/? (z,)= _Z[Ck:ukzk +euhz, ] (33)
k=1 k=1
Z [WP;? (z)+ 77k¢71? (z,)= _z [ez, + ¢z, ] (34)
k=1 k=1
4 _ 4
Z[é,kgol(c)(zk)-i_gkq)/?(zk):_Z[cké/kzk +¢,8,2,] (35)
k=1 k=1

where we take the boundary value on the crack surface for z, , and 6 stand for complex conjugate.
We introduce a generalized conformal mapping function "

z, =0,(()) =%log[%<:k +§i)+m 36)

where

Ile ﬂk eﬂa/ﬁkH _ e—/m/ﬂkH e”"/ﬁkH + e‘”“/ﬁkH

y A= ’ = y k:1,2,3
pi= 2i 2 p 2

Which maps the interior area €2, of z, -plane into the exterior of a unit circle in the £ -plane, get

{,=0= e’, 0<0<2rx, then there are three points on 2, can be transformed into the same

point & on the unit circle, and ®”(z, ) represented a function which is mapped by function @} (z, ),
then the condition(32) (35)can be rewritten as:

Z[cb“” )+ 0 (o) =lo+l0 (37)
S 1,0 (0) + 1,00 (@) = Lo +1,0 (38)
Y 1,00 () + 00 (@) = Lo +ho

k=1 (39)
MLV (0)+{, D (0)] =0 +l,0 (40)

-~
il

1

where

_ i a(C, +Ek) +ib(Cypy, +C i)

e 2
ia W+ Copt) +ib(Copt] +Ck/uk)
= 2
_ 24: a(Cny, +Cin ) +ib(C o +Cpym,)
pa= 2
] = 3 a(c, g, +ck§k)+lb(ckﬂk§k +Ckﬂk§k)
f kZ, :

do
Multiplying equations (37)-(40) by—g , where ¢ is point outside of the unit circle, according to
G f—

Cauchy’s integral formula for infinite region, we get

@\ (o)do © q)(o)(a)da odo —0 do - 1
[~ = o), j—g 0 Lo—g La(a—g) i @1)
Which yields
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> D) =- Z”*CDEZZ’ > k=? D@ = (42)

k=1

When k takes 1,2,3,4, ¢ correspond to &, The above solutions can be further represented as

ZA/V L k=1,2,3,4 43)

kjl

where ‘Akj‘ = X

Ay Ay Ay Ay
A=pun, (&, —¢)+un(&, =)+ un, (& —8)+ mn (& =6+ un, (S, — &)+ un, (g, —¢,)
A, (& = G) + um, (8 —C) + un (&, = &)+ u (&, = &)+ un, (& — &) + un (& =)
Ay = 0,6, = MoM,Gy — 16 + 1, G, + w8 — S, a, =1, + .8, + 1,6, —n.8, =8, =18,
Ay = 1,0, + W E + 1,C, — 1,0, — G, — I, , Ay = 1], JT], + [0]y = MoT] — M1, — M1,
Ay = 1n.G + W&y + 18— LG, — 1,6, — MG, @y =G+ 18, 11,8, — 1,8, — 1,6, — 11,65,
Ay = UG, + G+ 1 — G — 1S, — UG Gy = IT] + W1, + 1], — 0], — HT], = M1
Ay = LG, + IN,G + G, — 1,G, — I G, — MG, ay =108, + 1,6, + 11,8, =18, — 1,8, — 1.8,
Ay = W8, + I8+ G — G, — 1,6, — G, Ay = T+ 0]+ 1], — 1], = M1, — M1,
Ay = 1,6, + NG + 11,8y = IG5 — 16, — MG, , Ay =106, + 1,8+ 1.8, — 18— 1,8, — 1.6,
Ay = UG+ 1,0+ 1 — G, — 1,8 — WG Ay = [T, + MoT] + LT — 1], — [T — M,
From Egs. (28) and (36), we have

2r
exp(”z»—ﬂ—Jl—Zﬂexp(”zk)+exp(zk) )

o j=1

(k=123,4) (44)

o (z)=¢, 2, —

Vd T
Xp(—— z,()[\/l Z,Bexp( z,()+exp( z,)+ﬂ—exp(—z,()]
ey, BB AH Al Al z g (k=123,4) @45)
a\/l—2ﬂexp(ﬂ zA)+exp(,B z,)

Substituting Eq.(45) into the Egs. (21), all stress components of the elastic field of piezoelectric
quasicrystals are obtained as follows:

exp(——z,)[ \/1 - 2,6'exp(L z,)+ exp(z—” z,)+ - exp(L z, )]

oy = ZReiﬂ: fc, - :Bk ﬁk B H BH BH zAkj ;
= a\/l—2ﬂexp(l;{zk)+exp(182:;{zk)
2r T
4 exp(-2 zk)[Jl—zﬂ exp( " z)exp( o z)+ f-exp( 2]
oy = ZRCZ fc, - ﬂk BH BH BH pH ZAkj ]
k=1 T
a\/1—2,6’exp(ﬂkH zk)+exp(ﬂk z,)
Vs 2 Vs
A exp(— - z,)[ \/1 2Bexp(- z)+exp(——z,) + f-exp(——z,)] ,
oo ReS e, B A pH pH pH Z Al
= a\/l—Zﬂexp(&lzk)ﬁLexp(ﬂi;;zk)
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exp( )[\/1 2Bexp(-" Zk)+€Xp( Zk) +B—exp(— z)l,
H,=-2Re i’hﬂk {c, — ﬂk ﬂk ﬂkH Al Al ZA@ i
= a\/l—z ex ( )+exp(—— 27 z,)
Bexp BH Z p BH
V4 T V3 V4
y exp(—— Zk)[\/l =2pexp(——z,)+ eXp(izk) +p-exp(——2z)] ,
Hy,=-2 Reznk fc, - BH B B ﬂkf BH ZAAjlj}
k=1 Va T Jj=1
a\/l =20 exp(ﬂk—H z,)+ exp(ﬂk—H z,)
2z T
exp(—— zk)[\/l —2fexp(—z) +exp(— - z) + f-exp(— 2] |
D, =2Re Z e - ﬂ H — pH ﬂkIZ ﬂkzh; BH z 0
1-2 — —
0!\/ ﬂeXp(/}kH Zk)+eXP(IBkH Z)
T 27 T
. ( )[\/1 2ﬂexp( z)+exp(——z) + f-exp(——2z,)] |
D33 ) Rezé,k {c,‘ _ ﬂk ﬁk ﬁkH ﬂkf :BkH ZAA, ; (46)
= a\/l—Zﬂexp(—zk)+exp(—”zk)
BH BH

1
It is not difficult to find that there is singularity of 5 order at the crack tip(z =*a). By

document[ 14], the stress intensity factors of mode III crack of phonon field near the crack tip Z = @ can
be defined as follow

K, -iK, o, —io,,
K=K, -iK, |=lim\27z(x—a)| H, —iH, 47)
K, -iK, D, —iD,

Substituting Eq. (46) into the Eqs. (47), we can get

J—Rezmjﬂ“ x/_Rez,uk\/ﬂ_k\/wz

rRequﬁJw Ak/l/’K \/—Reanyk\/ﬂj\/%i L (48)

\/—Rezg\/ﬂj\/ﬂi%lﬂ]{ \/—ReZgyﬁ/ﬁjﬂi L

When the phonon field stress, phase field stress and their coefficients get to zero, Eq. (48) can be
rewritten as

\/_Rezg’k\/z\/oii i

where/; =0, this is the plane elastic problem of a straight crack in an isotropic piezoelectric narrow
body, which is in accordance with the results [23]. The stress intensity factor are given by

,— a+p-1
K= 1/05(05+ﬁ (49)
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—————————

_____________________________
-

..... B=1
—_— 2
———— B=3
3 3 s 6 s s & 2 o 2 4 G s
a/h Bk/ak
Fig.2 K, versus a/h with different £, i

Fig.3 K, /K, versus f,/a, with different ¢,
Fig. 2 reveals the law of K, with crack length. It is shown that the magnitude of stress intensity

factor always increases with the increase of crack length and decreases with the increase of strip width
Fig.3 indicate 5, /e, has a strong influence on X, /K,

As h — o, Egs. (45) can be reduced to
4
, z,
(Dk(zk)zck__[l_z— j (50)
—a j=

Substituting Eq. (50) into (21)

, the solution of the aperiodic plane problem for piezoelectric
quasicrystals is obtained as follows

4
1
0y :2ReZ;ulf[Ck _Z(l_
P

B/ Y
4 1
33=2Rekz_:,[ck—g(l—\/7)z /»JJ

4
O3 :_2Re;ﬂk[ck —;(1—\/7)121/1,{/ j (51
4
1
H32:_2Rez77kﬂk[ck -—(- )ZA;Q/
k=1 a ‘/
4
H;, :_2Rez77k[ck -—

— a( - / Z kj/
_2Rez§k’7k[c \/— ZA/(//

)ZAM J
1[ =

The analytical solution of the stress intensity factor at the tip of a Griffith crack in an infinite one-
dimensional hexagonal piezoelectric quasicrystal can be obtained by equation (47)

4
D, =2Re) {,[c, ——(1-
k=1

KU33 =pira, K% =t,u~Nra
K, =tn~Nza, K, =tnu~ra

KD3 :T'Zé/k “ﬂa’ D :é’kﬂk V7Ta

(52)
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When the piezoelectric constants, permittivity and quasicrystal elastic constants change into zero,
the Egs. (52) can be rewritten as

K, = pN7ma

This is an analytical solution of the stress intensity factor at the tip of a Griffith crack in an
infinitely isotropic material, which is consistent with the classical results.

5. Conclusion and Discussion

The theory of defects in the aperiodic plane of one dimensional six dimensional piezoelectric
quasicrystals is established, and the governing equations and fundamental solutions of the elastic
problems are given. As an application, the Griffith crack in an infinitely long and narrow body is
studied by means of generalized conformal transformation in complex functions, the analytical
solution of the elastic field is given. In the limit state, the solution of the crack problem is given. The

result shows that the stress still has —+ order singularity at crack tip z = +a, this is basically the same

as cracks passing through periodic plane in one-dimensional hexagonal quasicrystal. The stress field is
related to the elastic constants of the phason field, which is different from that of quasi crystal.
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