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Abstract. Asteroids are one of the most important targets for deep space exploration. In 

previous asteroid missions, the accurate estimate of gravity has proved to have a strong 

influence on the design of the approach orbit and navigation strategy. The wield gravitational 

field of an asteroid is mainly caused by the irregular overall shape and possible heterogenous 

mass distribution the interior. We propose to use the finite element method to compute the 

gravity of irregularly shaped asteroids; this method combines the advantages of the 

conventional mascon method and the polyhedral method. The tetrahedral meshes can be 

generated following the conventional division technique. Taking asteroid 216 Kleopatra as an 

example, we calculate the exterior gravitational field using the above mentioned methodology. 

We then compare the results from the finite element method and the polyhedral method under a 

degenerated case, i.e., with constant density. Then, four different density distribution 

assumptions are given, and the gravitational fields are calculated respectively. The comparative 

study and the density distribution assumptions indicate that the proposed method is suitable for 

modeling an arbitrary asteroid with nonuniform mass distribution. This method is expected to 

provide reliable gravity data for the design of guidance, navigation, and control systems in 

future asteroid missions. 

1. Introduction 

The scientific exploration of asteroids has become a hot research topic in the field of deep space 

exploration. With the development of deep space exploration technology during the past 30 years, the 

technology of probing asteroids has been extended from Earth-based observation activities to 

launching unmanned probes to target asteroid sampling. The United States (NASA), Japan (JAXA), 

and the European Union have launched multiple probes for the probe of small objects since the 1990s. 

So far only three probes have successfully landed on asteroids, namely the NEAR Shoemaker [1], 

Muses-C [1] and Rosetta [1]. The Dawn probe [1] from NASA was launched in 2007 and is currently 

flying around Ceres. Japan launched Hayabusa 2 [2] in December 2014 and has reached the target 

asteroid 162173 Ryugu. Hayabusa 2 completed the first landing sampling at 23:06 (UTC) on February 

21, 2019 and is expected to return to Earth in 2020. NASA launched OSIRIS-REx in 2016 and 

reached the target asteroid 101955 Bennu in 2018. OSIRIS-REx plans to land and sample in July 2020 

and return to Earth in 2023 [3]. Moreover, the New Horizons New Field Vision was confirmed on 
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January 1, 2019 to have flown over the asteroid 486958 (Ultima Thule), which is the most distant 

celestial body ever probed by humans [4].  

Compared with planets such as Earth and Jupiter, most asteroids are irregularly shaped; thus, their 

gravitational field is extremely complicated, which directly affects their orbital dynamics, and the 

navigation, guidance, and control of asteroid probe. The extended gravitational field of irregularly 

shaped asteroids is expressed and calculated through three main methods, namely, spherical harmonics, 

mascon method, and homogeneous polyhedron.  

The spherical harmonics method is a classical method of expressing and calculating the 

gravitational field of any celestial body, and it has been widely used in the field of spacecraft orbital 

dynamics [5]. It uses infinite series to approximate the gravitational potential function; that is, a series 

of spherical harmonic functions is superimposed on the basis of the central gravitational term to 

describe the non-spherical perturbation of the gravitational field. The spherical harmonic function is 

widely used due to its rapid convergence and high computational efficiency. However, when it is used 

to describe the irregular gravitational field of asteroids, shortcomings are noticeable. First, the 

truncation error is enlarged as the distance to the asteroid shortens, and the convergence speed 

becomes slower and even becomes divergent within the Brillouin sphere. Second, the spherical 

harmonic method cannot determine whether the probe is inside or outside the asteroid and requires an 

extraordinary algorithm to determine it; then, its exact spherical harmonic coefficient must be 

determined by the actual data determined by the orbit.  Although a series of improvements for the 

spherical harmonic function method, such as the ellipsoidal harmonic function method [6], the 

Brillouin interior/exterior spherical harmonic function [7], and the interior/exterior spherical Bessel 

function [8], has been proposed, it is the method itself that renders impossible the accurate description 

of the irregular gravitational field of an asteroid.   

The mascon method [9] is an intuitive technique that describes the gravitational field of an asteroid; 

it uses the volume element (small sphere) to approximate the shape of the target asteroid, and each 

volume element is approximated as a mass point to calculate the gravitational field of the target 

asteroid. The mascon method is simple and easy to implement, and the precision of the gravitational 

field increases with the number of volume elements. The mass weight can be flexibly modified for 

asteroids with a nonuniform density distribution, and the method can simulate the structure of an 

asteroid realistically, but the drawback is also obvious. First, the convergence is slow. As the number 

of volume elements increases, the calculation increases sharply; thus, the error accumulation also 

becomes a problem. Second, as the calculation point approaches the surface of the asteroid, the error 

of the calculation increases [10], the spherical harmonic function rises; thus, collision detection is not 

possible. 

The polyhedral method
 
[11] uses a polyhedral model to approximate the shape of an irregular 

asteroid. With the assumption that the polyhedral density is uniform, the gravitational potential and 

gravitation are processed and obtained via integral transformation. Although assumed uniform density 

of the polyhedral method does not conform to the real situation, the gravitational force at the edge of 

the surface of the polyhedron will produce singularity, and the computational efficiency is lower than 

that of the spherical harmonic function, the expressions are all closed, thereby ensuring that the 

calculation error does not change with the relative distance of the asteroid. The error is related only to 

the model error (shape and density distribution errors), and collision detection can be performed to 

determine whether the calculation point enters the interior of the polyhedron. Therefore, the method 

has been used widely in gravitational field analysis, the approach orbit analysis and the orbital design 

of asteroid missions.  

Numerous methods for calculating the gravitational field of irregular asteroids are available; 

however, when the density distribution is nonuniform, the above methods are not sufficient for 

accurately calculating the gravitational field. Therefore, by combining the advantages of the mascon 

and the homogeneous polyhedron methods, this study proposes a tetrahedral finite element method to 

estimate the gravitational field accurately under the condition of nonuniform density distribution; that 

is, the polyhedral model is filled with tetrahedrons based on the surface triangles. The gravitational 
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potential and gravitation of each tetrahedral finite element are calculated by the homogeneous 

polyhedron method, and the total gravitational potential and gravitation are added by each value. 

Different density distribution model assumptions can be given according to the geological structure, or 

an accurate density distribution can be inverted by other data. Then, we can accurately obtain the 

gravitational field of an asteroid. 

2. Methods 

2.1. Mascon method 

The mascon method uses the volume element (small sphere) to approximate the shape of the target 

asteroid, and each volume element is approximated as a mass point to calculate the gravitational field 

of the target asteroid. 

Equations (1) and (2) show the gravitational potential and the gravitational acceleration 
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where N is the number of volume elements, di is the position vector of the ith volume elements, Mi is 

the mass of the ith volume element, r is the position vector of the calculated point, G is the 

gravitational constant and MA is the total mass of the asteroid. 

2.2. Polyhedron 

The polyhedral method was first applied in the field of geophysical science. In the mid-1990s, Werner 

and Scheeres [11], assuming the polyhedral density to be uniform, used polyhedrons to approximate 

the shape of asteroids and derived the expressions of the gravitational potential and the gravitation 

near the polyhedron. 

Equations (4) and (5) show the gravitational potential and the gravitational acceleration. 
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where G is the gravitational constant,  is the density of the asteroid, e is the edge, and f is the face of 

the polyhedron,     is the normal vector of the fth face, Ff is the coefficient related to the face,      is the 

normal vector of the eth edge on the fth face, and Ee is the coefficient related to the edge. ˆ ˆFf f fn n ,  
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2.3. Tetrahedral finite element 

The tetrahedral finite element method combines the advantages of the mascon and the homogeneous 

polyhedron method, filling the polyhedral model with tetrahedrals based on the surface triangles. The 
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gravitational potential and gravitation of each tetrahedral finite element are calculated by the 

homogeneous polyhedron method, and the total gravitational potential and gravitation is added by 

each value. Therefore, the expressions of the gravitational potential and the gravitational acceleration 

are 
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where the coefficients are similar to the coefficients of the polyhedral method. 

2.4. The Polyhedron-FEM model 

The modeling process of the tetrahedral finite element method requires the polyhedron to be filled up 

by the tetrahedral finite element. Based on a given polyhedral model, a tetrahedral unit of a certain 

size range is distributed to the interior until the internal space of the entire polyhedron is not empty, as 

shown in figure 1 (left).  

 

Figure 1. Model of tetrahedral finite element. (Left: tetrahedral distribution, middle: outer 

surface of original polyhedron model, right: outer surface of tetrahedral finite element 

model.) 

However, the resulting triangular distribution of the outer surface of the polyhedron is not identical 

with the original polyhedral model, as shown in figure 1 (middle) and (right). Therefore, the data of 

the grid points and the triangle faces of the outer surface of the tetrahedral finite element model must 

be extracted to obtain the corresponding polyhedral model. 

3. Discussion 

In this section, the 216 Kleopatra asteroid is taken as an example for comparision with the polyhedron 

method to verify the effectiveness of the finite element tetrahedral method. As an example to make a 

reasonable density distribution hypothesis, the tetrahedral finite element can also calculate the 

gravitational field of asteroids accurately under the condition of nonuniform density.  

The original polyhedral model consists of 2048 vertices, 4096 faces, and the dimensions of the 

three central inertia main axes are 217 km×94 km×81 km. 

3.1. Case I: assumption of uniform density 

First, the uniform density hypothesis is used to prove the validity of the tetrahedral finite element 

method. The average density is assumed to be 3.6 g/cm
3
. The gravitational potential and gravitation 

are calculated at each field point from 150 km to the surface of the asteroid by the tetrahedral finite 

element and the polyhedron methods.  As shown in figure 2, the finite element method divides three 

grids, with 6885, 37462, and 89029 tetrahedrons.  
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Figure 2. Three grids of finite element model. (Left: 6885 tetrahedrons, middle: 37462 

tetrahedrons, right: 89029 tetrahedrons.) 

Therefore, we need to know the accuracy of the calculation of the tetrahedral finite element. 

We take the polyhedral method as the reference model. First, the accuracy between the tetrahedral 

finite element model under three kinds of meshes and the polyhedron model with the same outer 

surface (We call it finite element polyhedron below) are compared. Then the accuracy between the 

tetrahedral finite element model and the original polyhedron model under three kinds of grids are 

compared. 

For the same field point, the error of the gravitational potential is defined as 

 = 100%
t p
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U U

U
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and the error of gravity is defined as 
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The direction error of the gravity is defined as 

 = ,p tF F     (12) 

where Ut and Ft are the gravitational potential and gravity calculated by the tetrahedral finite element 

method, respectively;  Up and Fp are the gravitational potential and gravity calculated by the 

polyhedral method, respectively;  and <*,*>∈[0°,180°] is the angle between two gravitational vectors. 

Table 1 and table 2 present the error statistics for the two cases.  

Figure 3 illustrates the contour of the gravitational potential of the x-y, x-z and y-z planes of the 

asteroid obtained by the finite element method of the 6885 tetrahedral elements. 

Table 1. Gravity and gravitational potential error statistics of 216 Kleopatra 

calculated via the tetrahedral finite element and polyhedron models. 

  Minimum Maximum Average Standard deviation 

6885 

tetrahedrons 

ε(%) 0 2.24×10
-12

 2.69×10
-13

 2.31×10
-13

 

ν(%) 0 4.90×10
-12

 7.42×10
-13

 5.17×10
-13

 

δ (°) 0 1.71×10
-6

 2.05×10
-7

 4.11×10
-7

 

37462 

tetrahedrons 

ε(%) 0 4.82×10
-12

 5.27×10
-13

 4.43×10
-13

 

ν(%) 0 6.58×10
-12

 1.12×10
-12

 7.72×10
-13

 

δ (°) 0 1.71×10
-6

 2.06×10
-7

 4.12×10
-7

 

89029 

tetrahedrons 

ε(%) 0 5.85×10
-12

 4.11×10
-13

 4.58×10
-15

 

ν(%) 0 1.13×10
-11

 1.28×10
-12

 1.03×10
-12

 

δ (°) 0 1.71×10
-6

 2.04×10
-7

 4.13×10
-7

 

 



AMAE2019

IOP Conf. Series: Materials Science and Engineering 608 (2019) 012043

IOP Publishing

doi:10.1088/1757-899X/608/1/012043

6

Figure 3. Gravitational potential (km
2
/s

2
) calculated via tetrahedral finite element. (Left: contour on 

x-y plane; middle: contour on y-z plane; right: contour on x-z plane)

Table 1 and figure 3 reveal that the results of the tetrahedral finite element method are nearly the 

same as those of the polyhedral method with the same polyhedron shape. The relative error values of 

gravitation and potential energy are within 10-12%, and the direction error in gravity is within 10-6° 

inches. We believe that the error comes from two sources. (1) Truncation error of used 64-bitcomputer: 

The gravitational value of each small tetrahedron is particularly small; hence, such an influence may 

occur. (2) Truncation error of the sum of the large and small numbers: The existing error is sufficient 

to prove the validity of the tetrahedral finite element method; thus, this error source is not further 

eliminated.  In addition, the finer the mesh, the more the error accumulates; therefore, the mesh does 

not need to be further refined as long as the difference in gravity from the original polyhedron is 

appropriate. 

Table 2 indicates that with the tetrahedral finite element mesh refinement, the average of the 

relative error of gravity and potential decreases from 1.1217% to 0.2474%, and the average of the 

direction error of the gravity decreases from 0.0477° to 0.0058°. This table shows that when the 

original polyhedral model is given, the gravitational field can be calculated by the tetrahedral finite 

element method. As the tetrahedral mesh becomes finer, the result becomes closer to the gravitational 

field of the original polyhedron. 

Table 2. Gravity and gravitational potential error statistics of 216 Kleopatra 

calculated via tetrahedral finite element and original polyhedron models. 

Minimum Maximum Average Standard deviation 

6885 

tetrahedrons 

ε(%) 0 1.5259 1.1217 0.1807 

ν(%) 0 3.7216 1.1082 0.2243 

δ (°) 0 1.2591 0.0477 0.0544 

37462 

tetrahedrons 

ε(%) 0 0.5482 0.4088 0.0648 

ν(%) 0 1.4306 0.4060 0.0776 

δ (°) 0 0.3554 0.0141 0.0165 

89029 

tetrahedrons 

ε(%) 0 0.2979 0.2489 0.0388 

ν(%) 0 0.6409 0.2474 0.04376 

δ (°) 0 0.1805 0.0058 0.0088 

3.2. Case II: assumption of density distribution model 
This study assumes four density distributions that may exist in the asteroids. Their gravity field is 

calculated by the tetrahedral finite element method to illustrate the influence of different density 

distributions on the external gravitational field. 

The mass of the asteroid 216 Kleopatra is determined to be 4.64 × 10
18 

kg, and the estimated 

average density given above is 3.6 g/cm
3
. This condition is utilized as a constraint to generate a 

reasonable assumption of the density distribution. 

     The constraint of the total mass is 
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where M is the total mass of the asteroid, V0 is the volume of the total asteroid shape, 𝜌0 is the assumed 

nominal density of the asteroid, Vi is the volume of the ith internal addition, and 𝜌i is the density of the 

ith internal addition.   

216 Kleopatra is an M-type asteroid; thus, the part with the largest density can be assumed to be 

iron with a density of 7.5 g/cm
3
, and the rest are assumed to be uniform density, which is constrained 

by mass (this study aims to verify the finite element method; thus, the total mass does not necessarily 

need to be strictly equal). And a simple way to determine the density of the tetrahedron is based on the 

centroid coordinates of the tetrahedron. The following four assumptions are made about the internal 

density distribution of 216 Kleopatra, as shown in figure 4. 

 
Figure 4. Single core model (top-left), air core model (top-right), binary core 

model (bottom-left), heavy mass model (bottom-right). 

3.2.1. Single core model. Assume that the asteroid has a "nucleus" composed of iron with a density of 

7.5 g/cm
3
. As shown in the yellow part in figure 4 (top-left), the range of the core is assumed to be a 

sphere with a radius of 15 km, and the density of other portions is estimated to be 3.5 g/cm
3
. Therefore, 

we can obtain the contour map of the gravitational potential on the equatorial plane in figure 5 and 

percentage contour map of the relative error compared with the normal density in figure 6. The figures 

show that the part with the largest relative error is approximately 4% near the core, whereas the error 

away from the core is within 0.5%, since the core density is significantly higher than the original 

density, which has a greater influence on the gravitational potential around it; however, the density 

concentration area in the core has a reduced influence on its surroundings.   

  
Figure 5. Potential contour map of single core 

model. 

Figure 6. Error contour map of single core 

model. 
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3.2.2. Air core model. Assume that there is an air core exists inside the asteroid with a density of 0 

g/cm
3
, and the range of the air core is also assumed to be a sphere with a radius of 15 km. Then, the 

density of the other parts is estimated to be 3.7 g/cm
3
, as shown in the gray part in figure 4 (top-

right).Therefore, we can obtain the contour map of the gravitational potential on the equatorial plane 

in figure 7 and the percentage contour map of the relative error compared with the normal density in 

figure 8. It can be seen from the figures that the part with the largest relative error is near the air core 

approximately 3% and at both ends at about 2%, and the error away from the core is within 0.5%.It 

can be understood that the air core greatly influences the gravitational field near itself  and has a 

certain influence overall. Unlike the mass under uniform density, the mass of the two ends accounts 

for a larger proportion of the total mass; thus, the difference in uniform density will also increase. 

  
Figure 7. Potential contour map of air core 

model. 

Figure 8. Error contour map of air core 

model. 

3.2.3. Binary core model. Assume that the asteroid has two cores of iron on both sides, and its density 

is 7.5 g/cm
3
. The range of each core is assumed to be a sphere with a radius of 15 km. As shown in the 

yellow part in figure 4 (bottom-left), the density of the other parts is estimated to be 3.5 

g/cm
3
.Therefore, we can obtain the contour map of the gravitational potential on the equatorial plane 

in figure 9 and the percentage contour map of the relative error compared with the normal density in 

figure 10 .The figures show that the part with the largest relative error is approximately 2.5% at both 

ends, and it can increase the error on the other parts. It can be understood that the "binary core" at both 

ends will not only have a great impact on the gravitational field near itself  but will also have a certain 

impact overall. Nevertheless, the influence near the nucleus is relatively weaker than that of the single 

core, because part of the influence moves to other structures. 

  
Figure 9. Potential contour map of binary core 

model. 

Figure 10. Error contour map of binary core 

model. 
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3.2.4. Heavy mass model. Assume that a heavy mass composed of iron exists on the surface of the 

asteroid, the density is 7.5 g/cm
3
, and the heavy mass is located outside the −100km of the x-axis of 

the asteroid body coordinate system, as shown in the yellow part in figure 4 (bottom-right). The 

density of the other part is estimated to be 3.5 g/cm3. The contour map of the gravitational potential on 

its equatorial plane and the percentage contour map of the relative error compared with the normal 

density are obtained as shown in figures 11 and 12. The figures show that the part with the largest 

relative error of about 8% is near the heavy mass of the asteroid, whereas the relative error in other 

places is approximately 1%. 

  
Figure 11. Potential contour map of heavy mass 

model. 

Figure 12. Error contour map of heavy mass 

model. 

A large mass exists near the north pole of Ryugu, an asteroid being probed by JAXA [12]. It can be 

understood that when a heavy mass exists on the surface of the asteroid, the gravitational field near the 

mass will be highly different from the gravitational field with the uniform density. However, the mass 

only has a large effect on its vicinity. If the polyhedral method was used to calculate its gravitational 

field, it can only be assumed that its density is uniform. While the probe is approaching this asteroid, 

the true gravitational field will be different from the assumed gravitational field near this large mass. 

A mutation, which is highly dangerous for the probe, would occur in this field. 

Therefore, if the density of the mass can be obtained, the tetrahedral finite element method can be 

used to obtain an accurate gravitational field of the Ryugu. 

4. Conclusion 

A tetrahedral finite element method is proposed to compute the gravity of irregularly shaped asteroids. 

Under the condition of constant density distribution, the tetrahedral finite element can be regarded as a 

refinement of the polyhedral method, and its essence is to calculate the gravitational field of the same 

polyhedral model. Therefore, in this case, the tetrahedral finite element method has the same 

advantages as the polyhedral method, but the calculation amount is slightly larger. The tetrahedral 

finite element model is unique advantageous when the density distribution is not uniform, because it 

can accurately calculate the external gravitational field; whereas the polyhedral model is not 

applicable, and the mascon and spherical harmonic methods have many limitations. The tetrahedral 

finite element model can also reflect the density distribution of the asteroid, which cannot be achieved 

by other methods. 

When the density distribution inside the asteroid is not uniform, the part with the higher density 

will have a great influence on the gravitational field near itself, and it may also have a certain 

influence on the gravitational field of the whole asteroid. In particular, when the surface of an asteroid 

has a heavy mass, the gravitational field must only be accurately estimated by the tetrahedral finite 

element method. 
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