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Abstract. In practice, a spacecraft’s stabilization system, which is partially invariant to the 

disturbing moment, is the easiest to implement. The velocity performance limitation of the 

control actuator has the most influence upon stability of the system among all the nonlinearities 

considered in the mathematical modelling. Therefore, we shall consider a model of an invariant 

stabilization system with due regard to nonlinearity. For the system under consideration, it is 

possible to construct lines of equal values of the auto oscillation amplitude in a two-parameter 

plane. The study of the stability of the proposed partially invariant stabilization system 

revealed that it is possible to ensure sufficient stability margins in the system under 

consideration by choosing parameters for the stabilization controller. At the same time, it 

allows to provide high quality of the transition process. 

Keywords: accuracy, spacecraft, stabilization, controller, nonlinearity. 

1. Introduction 

Some publications [1-6] included synthesis of an invariant centre of mass motion stabilization system 

of a spacecraft and a comparative analysis of accuracy and quality of transition processes when 

conventional stabilization system is used. They demonstrated advantages of the proposed algorithms 

in terms of accuracy improvement. 

An essential criterion determining practical application of the control system in addition to the 

control accuracy is a possibility to provide proper stability margins of the system. Consequently, the 

challenge is to select appropriate parameters for a stabilization controller. Therefore, a detailed study 

of the stability of the partially invariant algorithm proposed in [4-6] as well as selection of the proper 

parameters for the stabilization controller based on conducted studies, which shall provide sufficient 

stability margins for the system and the required quality characteristics for the transition process shall 

be the task to be solving herein.  

The selection of stabilization controller parameters shall be more convenient and more informative 

if we build the system stability area in the stabilization controller parameter plane: for the angular 

stabilization channel and  for the centre of mass motion stabilization channel. In practice, sufficient 

stability margins of the system shall be 1.5 – 2.0 time decrease (increase) margin of the system 

parameters with respect to their boundary stability conditions [7]. Therefore, ensuring of the specified 

stability margins is an essential criterion in the selection of parameters for automatic system in this 

research. 

2. Problem formulation 
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Let us examine the stability of the proposed partially invariant stabilization system considering the 

influence of nonlinear elements of the system. As regards stability, the velocity performance limitation 

of the control actuator [8] has the most influence upon stability of the system among all the 

nonlinearities considered in the mathematical modelling [9, 10]. Therefore, we shall consider a model 

of an invariant stabilization system with due regard to nonlinearity. A block diagram corresponding to 

a model of the system allowing for nonlinearity is showing in Figure 1. 

 

Figure 1. Block diagram of an invariant centre of mass motion stabilization system 

considering nonlinear velocity performance of the control actuator [6]. 

In order to study the nonlinear system we shall apply the method of harmonious balance [7]. For 

this purpose, we shall open the system at input of the linear element (Figure 2).  

 

Figure 2. Break element at input of the nonlinear element. 

We shall define the transfer functions for the linear and nonlinear parts of the system. According to 

the block diagram, the transfer function of the linear part of the system is as follows: 

   3 2

4
( ) .

y

OD
L y y y y y y y

K
W s s C k C k s C k C k sC C k C C k

s
        

     
 

 (1) 

For nonlinearity with a saturation zone, the expression for the coefficient of harmonic linearization 

is [9]: 
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

 

  (2) 

where 
maxi   the amplitude of the input is signal for the control actuator; 

NI   is velocity performance 

saturation current for the control actuator. 

According to the above formulas, the dependence of the coefficient of harmonic linearization q  

from the amplitude of the input signal 
maxi  is showing in Figure 3. 
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Figure 3. Dependence of the coefficient of harmonic linearization q  from the signal amplitude 
max .i  

3. Stability area of a spacecraft’s partially invariant centre of mass motion stabilization system 

with due regard to velocity performance saturation zone of the control actuator 

To analyse periodic solutions we shall use the graphical method [11]. For this purpose, we shall build 

a frequency hodograph for the transfer function of the linear part of the system. By substituting 

Laplace operator s  for ,j  in the expression ( )LW s  we obtain: 

   3 2

4
( ) .

y

OD
L y y y y y y y

K
W j j C k C k C k C k j C C k C C k        

   


       
 

 (3) 

Let us introduce the following notations: 

 1 ;y yC k C k 
     2 ;y yC k C k 

    
3 ;y yC C k    

4 .y yC C k    (4) 

Given the above notations, the expression (1) will be as follows: 

3 2

1 2 3 44
( ) .OD

L

K
W j j j      


     

   (5) 

We shall separate the real and imaginary parts from the expression (5): 

   2

2 44
Re OD

L

K
W   


      (6) 

   3

1 34
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
      (7) 

The characteristic equation for the linear part of the open-loop system has four zero roots, so when 

the frequency   changes between -0 and +0 the hodograph of the transfer function ( )LW j  will move 

along a circle with infinitely large radius with 0

1 180    till 0

2 180 .     
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case, the phase shift of frequency hodograph will be: 
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  (8) 

If     the expressions (6) and (7) will take on values    0: Re 0;Im 0.L LW W
  

   
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Figure 4. The amplitude-frequency characteristics of the partially invariant spacecraft centre of mass 

stabilization system. 

Thus, if frequency   changes from 0 to ,  the transfer function hodograph ( )LW j  beginning in 

the third quadrant with the phase shift 0180 ,   while moving through the 4th and 1st quadrants 

reaches the origin of coordinates. In this case, since closure of the system was made through +1 and 

not through -1, it is necessary that the branch of the phase and gain performance corresponding to the 

positive frequencies, together with a fragment of the circle beginning with a positive real semi axis 

doesn't cover the point ( 1;0 )j  to provide stability of the closed-loop system [12]. 

The existence of periodic solutions in the system can be determined from the condition 

max( ) ( ) 1,L NW j W i   where 
max( )NW i  a transfer function of the nonlinear element is, or otherwise: 

max

1
( ) .

( )
LW j

q i
       (9) 

According to (6) and (7), condition (8) shall be split into two conditions: 

 Im 0LW       (10) 

 
max

1
Re .

( )
LW

q i
      (11) 

By substituting the expression for the imaginary part of the transfer function of the linear part of 

the system into the condition (8), we get:  

 3

1 34
0,ODK

  


      (12) 

where from 2

1 3 0,    or  
1 2

3

1

.





 
  
 

     (13) 

The determined frequency is the frequency of a periodic solution for the given nonlinear system. 

Further, we will denote it as .p  The self-oscillation amplitude in the system under consideration 

max p
i  shall be found from the expression (13):  
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By substituting the expression (2) for )
max(

p
q i  into the last formula, we finally obtain: 
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   (15) 

The expression (15) is transcendental relative ,
max p
i  therefore, it can be solved only numerically. 

The value 
max p
i  can be approximately determined from the diagram 

max( )q i (Figure 4). 

 

Figure 5. Stability area limits of a partially invariant stabilization system in the parameter plane ,y yk k  

with due regard to velocity performance saturation zone of the control actuator. 

Now we shall consider stability of periodic solution. To this end, we shall build a hodograph of the 

function 

max

1

( )
NM

q i
  in the plane UV (Figure 5). According to (2), when 

max0 , 1,N Ni I M    if 

max ,N Ni I M  monotonically increases to .  Since hodograph 
NM  crosses the amplitude-frequency 

characteristic of the linear part of system “from the outside to the inside” [13], then the periodic 

solution of the system under study  ,
max pp
i   will be unstable. Therefore, when 

max max p
i i  the 

system solution will converge to 0, that is, the system will be stable, and if 
max max p
i i we will 

observe a divergent transient process, that is, the system will be unstable. 

Thus, the stability condition for the system in general shall be determined by the initial conditions 

of the transition process, at which the amplitude 
max
i  at the input of the nonlinear element is less than 

the value :
max p
i  

.
max max p
i i      (16) 

For the system under consideration, it is possible to construct lines of equal values of the auto 

oscillation amplitude in a two-parameter plane. Such parameters will be the gain of the angular 
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velocity and angular acceleration stabilization controller , .k k
 

 The following can be obtained from 

(15) and (16):  
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Let us set 

1 2

1 ,
y y

C
с

C k





 
  
 
 

 then 

1 2

1

.
1

p

C

с k






 

    

 From  2

2 44

1
,

)
max(

OD
p

p
p

K

q i
  


   the 

expression (11):  

 2

2 44

1
,

)
max(

OD
p

p
p

K

q i
  


      (18) 

from which  
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By expanding the expression for 
2 ,  we get after transformation: 
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After substituting in the expression for :p  
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After transformation, we get: 

 
1

4 2

1

11
.

) 1
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y

OD
p

CC k
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
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By expanding the expressions for 
4 and 

1,с  we finally have: 

 
.

)
max(

y y

yOD y
p

C k k
k k

kK q C k C ki
 

 
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 


   (23) 

It should be noting that the right-hand side of expression (23) is different from the right side of the 

condition (10), which determines the stability limit for the linear systems only by the presence of 

harmonic linearization coefficient in the denominator of the first term. Since   1,
maxq i   then the 

presence of nonlinearity 
1 2 3max max maxNI i i i    will lead to narrowing of the stability area 

according to the parameters , .k k
 

 

Accordingly, the expression for the stability limits according to the parameters ,y yk k  will be 
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similar to the right side of inequality (16) taking into account the coefficient of harmonic linearization 

 max :q i  

 

2

.
)

max(
y y

y y

OD y y
p

C k k
k k

kK q C k C k ki
 
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

    (24) 

A general view of the stability area in the parameter plane ,y yk k  for different amplitude values at 

the input of the nonlinear element is shown in Figure 5. 

As can be seen from the expressions (13)-(14) and Figure 5, stability of the invariant stabilization 

system considering nonlinearity and having a saturation zone, will directly depend on the value of the 

input signal in the nonlinear element, and ultimately on the disturbances acting on the spacecraft [14]. 

Therefore, in order to use such a stabilization system it is necessary to choose in practice such 

parameter values of the control action under which the system will be stable under possible 

perturbations. On the other hand, we will need to determine for the system under study conditions for 

its absolute stability regardless of perturbation. 

According to [10] the absolute stability area shall be determined as an area of system parameters, 

which obviously escapes periodic solutions, and in which any transition process fades under any initial 

conditions to the value 0.x   

To determine an absolute stability area we can apply any linear stability criterion to the 

harmonically linearized system. 

Let us apply the Hurwitz criterion to the system. According to the block diagram (Figure 1) and the 

expression for the transfer function of the linear part of the system (1), a characteristic equation for a 

harmonically linearized system will be: 

   4 3 2

max( ) 0.OD y y y y y y y ys K s C k C k s C k C k sC C k C C k q i        
        

 (25) 

Let us introduce the following notations: 

 1 ;y y ODC k C k K 
     2 ;y y ODC k C k K 

    
3 ;y y ODC C k K    

4 .y y ODC C k K    (26) 

Then the characteristic equation for the linearized system can be written as: 

4 3 2

1 2 3 4 0.s s q s q s q q            (27) 

The Hurwitz conditions for the characteristic equation of the fourth order [8]: 

 2 2 3

1 2 3 4 3 1 2 3 4 10; 0; 0; 0; 0.q q q q q q q q                  (28) 

To ensure absolute stability of the system it is necessary that the above conditions be satisfied for 

any admissible values of the coefficient of harmonic linearization .q  For the system under study 

0 1.q   Obviously, with the boundary condition 0q  of the Hurwitz conditions for this system 

shall be not performed. Therefore, this system escapes absolute stability with any parameters. This is 

also confirmed by the graphic method of periodic solutions investigation. Let us refer to Figure 4. To 

ensure stability of a linear system it is necessary that the frequency hodograph for the transfer function 

of the linear part of the system ( )LW j  should not cover point ( 1;0 ).j  When frequency changes from 

0 to .  On the other hand, the hodograph of the function 

 max

1

q i

 when q  changes from 0 to 1 goes 

through a real positive semi axis from  to +1. According to the above studies, the point of 

intersection of the frequency hodograph ( )LW j  and the hodograph of the function 

 max

1

q i

 is a 

point of unstable periodic solutions and provided the conditions for the stability of the nonlinear 
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system fulfilled (when the hodograph does not cover point ( 1;0 ),j  there will be always an area of 

unstable periodic solutions. 

4. Conclusion 

Based upon research results we can conclude the following: 

1) It is impossible to implement a centre of mass stabilization system, which is invariant regarding 

both the disturbing force and disturbing moment. 

2) In practice, a stabilization system, which is partially invariant to the disturbing moment, is the 

easiest to implement. In order to comply with the invariance conditions, there must be a positive 

control actuator feedback with a gain equal to the object's angular deflection gain of in the angular 

stabilization channel. Stability of the system shall be ensuring by introduction of an additional 

second derivative action from the object's deflection angle into the action as well as by 

introduction of an equivalent delay loop in the feedback of control actuator in order to compensate 

for the dynamic delay of the stabilization controller. 

3) It is also possible to synthesize a stabilization system, which shall be partially invariant fewer than 

two disturbances   simultaneously. Open feedback of the control actuator and exclusion of control 

according to object's deflection angle and of the spacecraft centre of mass drift coordinate from the 

angular stabilization channel are the invariance conditions in this case. Such a stabilization system 

has obvious advantages over a system, which is invariant under disturbing moment M, and 

therefore it is more suitable for practical implementation. 

4) A partially invariant under two disturbances   stabilization system provides a significant increase 

(several times) in the accuracy of the centre of mass tangential stabilization velocities as compared 

to known stabilization systems. 

5) The tangential velocity transition process in a partially invariant stabilization system has a 

significantly shorter (several times) decay time as compared to known stabilization systems. 

6) Employment of additional self-regulation elements in a partially invariant stabilization system 

reveals the significant advantages of such a system in terms of greater accuracy when compared to 

known stabilization systems.  

7) The study of the stability of the proposed partially invariant stabilization system revealed that it is 

possible to ensure sufficient stability margins in the system under consideration by choosing 

parameters for the stabilization controller. At the same time, it allows to provide high quality of 

the transition process. 

8) The system under consideration has an unstable limit cycle due to "saturation zone" nonlinearity, 

which cannot be excluding by system parameter adjustment. It means the system is missing the 

absolute stability area. 
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