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Abstract. A first generation single crystal superalloy was employed to research the
high temperature creep behavior. Scanning electron microscope (SEM), transmission
electron microscope (TEM) are used. The main results are summarized below: There
are two mechanisms for the steady creep. The first one is superlattice dislocation

cutting γ′ precipitates, which is the main mechanism for 1000℃ creep behavior. In

this case, the creep rate increases when the γ/γ′ microstructure undergoes topological
inversion, which leads to a rapid increase in the density of γ′ cutting dislocation. The
second mechanism is transverse climb of a/2<110> interfacial dislocation, which is

the main mechanism for 1100℃ creep behavior. In this case, climb of interfacial

dislocations produced most of the steady creep strain. A by-product is the vacancies
diffusing along the interfaces and low angle boundary to pores.
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Nickel-based single crystal superalloys have been widely used in the manufacturing of
aero-engine turbine blades because of its excellent high temperature creep strength and
fatigue strength, as well as good thermal corrosion resistance and oxidation resistance[1,2].
With the increasing temperature of the advanced aero-engine turbine, high temperature creep
deformation and fracture become one of the main failure forms of single crystal turbine
blades. The creep behavior of nickel-based single crystal superalloy under typical temperature
stress has been widely studied [3-8], and the research mainly focuses on the microstructure
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evolution, the deformation mechanism of different creep stages and the prediction model of
creep life, in which the directional coarsening of γ′ phase is a typical phenomenon in the
medium and high temperature creep process of single crystal alloy. However, there is no
unified conclusion about its effect on the properties of alloys. Furthermore, the creep
deformation mechanism of single crystal alloy at about 760 °C has been thoroughly
studied[9,10]. The research indicates that the creep behavior and deformation mechanism of
single crystal superalloys are influenced by experimental temperature, stress range, loading
mode and so on. This is mainly caused by the interaction between dislocations and γ′ particles.
With the changes of these factors, both of the creep and deformation mechanism of the alloy
are changing[11-19]. Generally, there are still few researches on creep deformation mechanism
of single crystal alloys at high temperature level, i.e. 1100 °C, especially existing plenty of
problems to be studied in the third stage of creep deformation and creep fracture mechanism.
In this present work, a nickel-based single crystal superalloy was employed to study the high
temperature creep under low applied stress behavior at 1000 °C and 1100 °C. The high
temperature creep behavior, creep deformation, fracture characteristics and mechanism of
single crystal alloy were systematically studied and analyzed. The different of creep
mechanisms at two temperature were also compared. Results documented in this study should
be able to provide an experimental basis for the utilization of single crystal alloy under high
temperature conditions, and further improve the creep theory of nickel-based single crystal
superalloy.

1. Experimental materials and procedures
The experimental material was the first generation of nickel-based single crystal superalloy
with chemical compositions of Ni-Cr-W-Ta-Al-Co-Ti-Mo system. The constant load tensile
creep test was carried out on high temperature creep machine with applied stress ranging from
120 to 220 MPa, and the experimental temperature were 1000 °C and 1100 °C. The furnace
temperature was controlled by the upper, middle and lower platinum-rhodium thermocouples
which placed in the normal distance part of the specimens, and the temperature controlled
within ±2 °C. creep strain was measured by an extensometer connected to the shoulders of
creep specimens, the accuracy was 5×10-4~5×10-5and experimental environment was air.
Most of specimens were pulled to fracture, part of specimens was subjected to creep
interruption test for the observation of microstructure.
The specimens after creep fracture and interruption test were observed and analyzed by
JSM-6301 field emission scanning electron microscopy and Tecnai G 20 transmission
electron microscopy (TEM). When preparing TEM specimens, 0.5 mm thick sheets were cut
along the direction perpendicular to the tensile axis and 5-10 mm away from the tensile
fracture. Firstly, mechanically ground to below 50 μm, then double jet electrolysis was used
to reduce the thickness. The electrolyte was composed of 10% perchloric acid and 90%
alcohol.

2. Results and discussion

2.1. High temperature creep properties of experimental alloy
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Figure 1. Typical creep curves of experimental alloy:
(a) 1000 °C and (b) 1100 °C

Figure 1 shows the typical creep curves of experimental alloy under different stress levels at
1000 °C and 1100 °C. As can be seen from the strain vs. time relationship, the main
characteristics of high temperature creep behavior of experimental alloy are as follows:
(1)Both the creep curves at 1000 °C and 1100 °C exhibit three stage of creep characteristics,
i.e. initial creep, steady creep and accelerated creep. The duration of creep steady-state stage
at 1100 °C accounts for a higher proportion of the whole creep life, and the creep curve shows
a clear platform shape.
(2)The creep extension decreases obviously when the experimental temperature increasing
from 1000 °C to 1100 °C. Under the conditions of 1000 °C and 160 MPa – 220 MPa, the
fracture extension ranges from 20% to 40%. Compared with the former, the extension at 1100
°C ranges from 8% to 16%, which is obviously smaller than that of the former.
(3)In the creep test at 1000 °C, the strain rate rises slowly after alloy entering the third stage
of creep. While in the test at 1100 °C, the strain rate rises rapidly after the beginning of the
third stage of creep, and fracture occurs in a short period of time.

2.2. Microstructural evolution of creep process
As can be seen from figure 2a and b, the shaped raft of directional coarsening of γ′
phaseoccurs during the creep test at high temperature ranging from 1000 °C to 1100 °C. The
alloy belongs to negative misfit alloys, hence the raft structure perpendicular to the direction
of applied stress formed under tensile stress. The dislocation configuration observed by TEM
shows that complete and regular dislocation network at the γ/γ′ interface is rapidly formed
during creep at 1000 °C and 1100 °C. The formation of dislocation network originates from
the reaction between dislocations at the γ/γ′ interface, which generally acts as impediment for
dislocation movement and reduces creep rate. figure 2c and d reveal that superlattice
dislocation cutting γ′ phase occurs at both temperature in the post stage of creep, which is the
main deformation mechanism of creep steady-stare stage. In contrast, the greater number of
dislocations are cut into γ′ phase and show multiple morphologies under 1000 °C and higher
stress condition. However, there are only few dislocations are cut under 1100 °C and higher
stress condition, and mainly exist in a single form of screw dislocations. This is the biggest
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difference between the creep deformation mechanism at 1100°C and 1000 °C. It indicates that
large number of dislocations can not be cut into γ′ phase due to insufficient applied stress,
hence the dislocation configuration does not change significantly during the whole creep
process.

Figure 2.Microstructural evolution after high temperature creep fracture

2.3. Behavior of pore and creep fracture
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It can be seen from the fracture morphology of experimental alloy after creep fracture that
fracture modes at 1000 °C and 1100 °C are the same as microporous aggregate fracture
(figure 3). The creep fracture of is composed of abundant square facets, the orientation of
planar edge is <110> direction, and the small circular hole at the center of plane is the origin
of the crack. As the temperature rises to 1100°C, the contour of teas plane in the fracture
gradually becomes blurry, dimple shape becomes irregular and the number of crack initiation
points increases.

Figure 3. Fracture morphology of alloy after creep fracture

2.4. Analysis and discussion
In the temperature and stress ranges of 1000 °C, 160-220 MPa and 1100 °C, 120-150 MPa,
the alloys exhibit typical deformation characteristics of the above series of single crystal
alloys under high temperature and low stress creep, but it is worth noting that there are also
some obvious differences in the creep behavior between the two experimental temperatures.
The main manifestations are smaller proportion in the third stage of creep at 1100 °C, faster
the deformation rate, and larger density of pores after creep fracture. However, the number of
dislocations in the γ′ phase and the creep elongation both are large in the third stage of creep
at 1000 °C.
The controlling factor of creep in the initial stage is the slip of the a/2<110> dislocation loop
in the {111} plane in the transverse matrix channel perpendicular to the applied stress [001]
direction, due to the applied stress has the same direction as the γ/γ′ dual-phase mismatch
stress ondislocations. The widening of the transverse matrixchannel caused by the γ′
phaseshaped raft will further promote the movements of the dislocation loop. The generation
and operation of dislocations are affected by temperature. The number of dislocation sources
at 1100 °C is much higher than 1000 °C, so the initial creep content is significantly higher
than that of the latter. The results of initial creep are as follows: a large number of matrix
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dislocations deposit at the interface of dual-phase, begin to form dislocation networks, γ′
phase transforms into a raftmicrostructure, and the creep rate decreases gradually under the
influence of the dislocation networks.
As the resistance of matrix dislocation movements increases, the deformation rate of initial
creep slows down and creep begins to enter steady state. During the creep steady state,
raftmicrostructure completely hindersthe longitudinal matrix channel, making it impossible
for the dislocations to continue moving in a way that bypass the γ′ phase. An important
recovery mechanism for maintaining deformation at this time is that dislocations enter the
interior of γ′ phase in pairs. As mentioned above, during the creep steady state, dislocations
cut raft structure. The superlattice dislocations cutting γ′ phase will annihilate with the
opposite superlattice dislocations on the other side of raft structure, which is the main
recovery mechanism of creep steady state.On the other hand, single dislocation cutting
mechanism can not explain the formation and growth of pores during creep. The climbing of
depositional dislocations at the γ/γ′ dual -phase interface can be regarded as another recovery
mechanism. Carry and Strudel[20] et al. firstly proposed that the γ/γ′ interface dislocation
climbing can be regarded as plastic deformation mechanism. Epishin and Link[21-22] et al.
pointed out that after creep enters steady state, the 60° dislocations deposited at the γ/γ′
interface can perform non-conservative movements along the direction perpendicular to the
applied load, which is mainly dominated by the diffusion process. The non-conservative
movements can be regarded as a combination of dislocation slipping and negative climbing,
which leads to the alloy undergoing plastic deformation parallel to the applied load direction,
and the negative climbing of dislocations causing a large number of vacancies to be
discharged These vacancies are diffused to pores through the rapid channels such as the
interface between raft and matrix, and low angle boundaries, resulting in the growth of pores.
The increase of pore volume fraction after creep can be explained by this deformation
mechanism.
In summary, there are two main deformation mechanisms after high temperature creep enters
steady state, which are dislocations cutting γ′ phase and interface dislocations climbing,
respectively. Obviously, the dislocations cutting mechanism requires higher stress level, but
the interface dislocations climbing mechanism is more dependent on the creep experiment
temperature.

3. conclusions
In this work, a nickel-based single crystal alloy was employed to study the high temperature
creep under low applied stress behavior at 1000°C, 160-220 MPa, 1100 °C, and 120-150 MPa.
The main conclusions are as follows:
(1)The third stage of creep at 1000 °C lasts longer, deformation rate increases slowly, and the
elongation of the alloy is larger. However, the deformation rate of the third stage of creep
rapidly increases and fractures in a short time at 1100°C, and the total elongation decreases by
about 50% compared with the former;
(2)There are two main deformation mechanisms in the high temperature creep steady state ,
which are dislocation cutting γ′ phase and interface dislocation climbing, respectively. The
influence of the two mechanisms on creep deformation varies according to temperature and
stress conditions. The former requires larger applied stress to press dislocations cutting γ′
phase, while the latter requires higher experimental temperature to promote diffusion;
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(3)The main deformation mechanism of 1000°C and 160-220 MPa creep steady state is
dislocations cutting γ′ phase. In the post stage of creep steady state, the γ/γ′ dual-phase
structures become topologically inverted, and the continuous slipping of superlattice
dislocation inside the γ′phase causes the aggravation of alloy deformation and creep entering
the third stage;
(4)The main deformation mechanism of 1100 °C and 120-150 MPa creep steady state is the
migration of γ/γ′ dual-phase interface dislocations. The dislocations slip and negatively climb
perpendicular to the main stress axis, and discharge a large number of vacancies, and
vacancies diffusing to pores result in the growth of casting pores and the initiation of new
creep pores. The cracking of a large number of pores leads the deformation rate of the alloy to
rise rapidly and fracture in the third stage of creep.
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