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Abstract. This paper presents an efficient and accurate numerical technique for determining 

the mechanical response of an infinite elastic layer under surface loading and surface stress 

effects. The governing equation of the bulk is formulated from the classical linear elasticity 

theory via a SBFE technique whereas that of the material surface is obtained from a complete 

version of Gurtin-Murdoch surface elasticity theory. By enforcing the continuity at the 

interface of the material surface and the bulk, it leads to a system of linear non-homogenous 

ordinary differential equations governing the nodal functions. A general solution of the 

resulting system of ODEs is constructed via standard procedures and then used together with 

the boundary conditions to form a system of linear algebraic equations governing nodal 

degrees of freedom. To investigate the accuracy and convergence of the proposed method, 

selected scenarios are solved and obtained numerical results are reported and discussed. 

1.  Introduction 

In the early of 21
st
 century, a nano-layer surface coating has been commonly utilized to enhance both 

surface and overall properties of components such as the energy harvested reflective color filter, 

surface wear resistance complex metal boron-carbide, and invisible carbon nanotube coating. 

Although experimental studies and theoretical simulations based on discrete models [1, 2] provide a 

profound understanding reflecting the real response of surface coatings, they result in the prohibitive 

cost and large computational effort, respectively. Modified continuum-based models, with the 

incorporation of Gurtin-Murdoch surface elasticity theory [3, 4]with the classical linear elasticity, are 

considered promising in that they can provide the first approximation of the response prediction of 

nano-size problems requiring relatively cheap computational effort. 

In the past studies, the complete version of Gurtin-Murdoch model has been widely adopted to 

investigate the surface energy effect of various nano-size problems under prescribed loading by 

various analytical solution methods such as Fourier integral transform for buried load in an infinite 

elastic layer [5]; Hankel integral transform with Love’s representation for an infinite rigid-based 

elastic layer under axisymmetric surface load [6] and a layered elastic half-space under axisymmetric 

surface load [7]; and a technique based on Boussinesq potential for an elastic half-space subject to 

surface circular shear traction [8]. Although those employed solution procedures are successful in 

predicting the response of nano-size problems via the Gurtin-Murdoch model such as the size-

dependency behavior, the issue of computational efficiency arises when more practical and large scale 

problems become of interest.  
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The present study aims to implement an alternative solution procedure, based upon the framework of a 

scaled boundary finite element method (SBFEM), to obtain response of nano-size problems via a 

continuum model enhanced by integrating Gurtin-Murdoch surface elasticity theory to treat the 

influence of surface energy. In particular, a problem associated with two-dimensional, infinite, rigid-

based, elastic layer under surface loading is chosen as the representative case to demonstrate the 

capability of the proposed technique. 

2.  Problem formulation 

Consider a two-dimensional, infinite, elastic layer of thickness h  resting on a rigid foundation and 

subjected to arbitrarily distributed normal traction p  over the length 2a  as shown schematically in 

Fig. 1. The bulk of the layer is made of a homogeneous, isotropic, linearly elastic material whereas a 

thin layer on the top of the layer (termed here the surface) is made of a different homogeneous, 

isotropic, linear elastic material with the presence of initial residual surface tension. In the present 

study, the layer is assumed to be free of body force. 

 

 

Figure 1. Two-dimensional, elastic layer subjected to arbitrary vertical pressure 

 

The elastic layer can be divided into three sub-domains along the lines bb  and cc  and they are 

referred to the left part 
l , the center part 

c , and the right part 
r . In the formulation presented 

further below, a representative domain ̂  with a similar shape as that of the center part 
c  is 

considered. The left, right, top and bottom boundaries of this representative domain ̂  are denoted by 

ˆ ˆ ˆ,  ,  l r t   , and ˆ b , respectively. Once the formulation is achieved on ̂ , it can be readily 

applied to all subdomains 
l , 

c , and 
r . For instance, 

l  is obtained from ̂  by taking the 

boundary ˆ l  to infinity and removing all loading on the boundary ˆ t .  

From the classical theory of elasticity, the equilibrium equations, the constitutive laws, and the 

infinitesimal strain-displacement relationship of the bulk material can be expressed in a concise form, 

for a two-dimensional body subjected to plain-strain condition and zero body force, as 

 
T b L σ 0  ; 

b bσ Dε  ; 
b bε Lu  (1) 

where , , ,b b bσ ε u D  and 1 1 2 2/ /x x     L b b  are a vector containing independent in-plane stress 

components, a vector containing independent in-plane strain components, a vector containing in-plane 

displacement components, a modulus matrix involving material constants, and a two-dimensional, 

linear differential operator with 1b  and 
2b  denoting Boolean matrices, respectively; the superscript 

“ T ” denotes the matrix transpose operator; and the superscript “ b ” is used to emphasize field 

quantities associated with the bulk material. By applying the standard weighted residual technique 

together with the integration by parts to the basic governing equations (i.e., Eq. (1)), the alternative 

weak statement governing the bulk material can be expressed as:  

 
ˆ( )

ˆ ˆ

( ) ( )
T

b T bdA ds
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 Lw D Lu w t  (2) 
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where w  denotes a sufficiently smooth weighted function; ˆ ˆ ˆ ˆ ˆl r t b      ; and 
ˆ( )b 

t is 

the traction acting to the boundary ˆ  of the bulk. Now, let one introduce the scaled boundary finite 

element approximation of the displacement 
b

u  and weighted function w  such that 

1 2 2 1

1

( , ) ( ) ( )
p

b b i i

i

x x x u x


   u u NU  ;  
1 2 2 1

1

( , ) ( ) ( )
p

i i

i

x x x w x


   w w NW       (3) 

where N , U , and W  represent, respectively, a matrix containing the basic functions i , a vector 

containing the nodal displacement functions iu , and a vector containing the nodal weighted functions 
iw . By substituting the approximations of b

u  and w  into Eq.(2) together with the integration by parts 

of terms involving the first derivative of the weighted function, and by invoking the arbitrariness of 

the vector W , we obtain the scaled boundary finite element equation of the bulk material and the 

corresponding boundary conditions as follows: 

 
2 1 1 0[ ( ) ]b b b T b bt bb      E U E E U E U T T 0 ;

1( )bl b bl

lx  Q Q P ;
1( )br b br

rx Q Q P  (4) 

where   
1(0) ( )bt T bt xT N t , 

1( ) ( )bb T bbh xT N t ,  
2

0

h

bl T bldx P N t ,  
2

0

h

br T br dx P N t , 
1x





N
B  

            
2 2

0

h

b T T dx  2 2E B b Db B ,  
1 1 2

0

h

b T T dx  2E N b Db B ,  
0 1 1 2

0

h

b T T dx E N b Db N , 

, , ,bt bb bl brt t t t  are tractions on the boundaries ˆ ˆ ˆ,  ,  t b l   , and ˆ r , respectively, 
1 1 1 1,l rx x x x   

denote the coordinates associated with the left and right boundaries, respectively, and b
Q  is termed the 

internal nodal flux of the bulk material defined by 

 
1 2

b b b  Q E U E U  (5) 

For the material surface, its response is modeled by the complete version of Gurtin-Murdoch surface 

elasticity theory [3, 4]. In particular, the in-plane and out-of-plane equilibrium equations of the surface 

in terms of the surface displacements, for the one-dimensional case, and the corresponding boundary 

conditions are given explicitly by 

 0s s sb   E U t t 0 ;
1( )sl s sl

lx  Q Q t ;
1( )sr s sr

rx Q Q t  (6) 

where the superscript “s” is used to designate quantities associated with the surface; 
0

t  is the 

prescribed loading on the surface; 
sb

t  denotes the traction exerted to the surface by the bulk; 
sl

t , 
sr

t  

are tractions on the left and right boundaries of the surface; 

 
(2 ) 0

0

s s

s

s

   
  
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E , 

1

2

s

s

s

u

u

 
  
 

U    (7) 

in which s  and 
s  are surface Lame constants, 

s  is the residual surface tension, and 
1

su , 
2

su  are 

components of the surface displacement; and, similar to the bulk material, s
Q  denotes the internal flux 

within the material surface defined by 
s s sQ E U . By enforcing the continuity along the interface 

between the bulk and the material surface, it leads to the final system of governing differential 

equations of the whole system and the corresponding total nodal internal flux  

 
2 1 1 0[ ( ) ]bs b b T b    E U E E U E U t ; 

1 2

b bs  Q E U E U  (8) 
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where 
2

bs
E  is a matrix resulting from the assembly of 

2

b
E  and s

E , t  denotes a vector containing the 

information of the side-face tractions, and Q  denotes the total nodal internal flux. By further enforcing 

the prescribed displacement at the bottom of the layer, the nodal displacement vector U  and nodal 

traction vector t  can be partitioned into { }f rU U U  and { }f rt t t  where ,f rU t  are unknown a 

priori and ,r fU t are fully prescribed. According to such partition, the system (8) can also be portioned 

to arrive at the reduced system of differential equations governing the unknown displacement 
f

U . 

3.  Solution methodology 

Following the standard procedure in the theory of differential equations, the general solution of the 

unknown displacement 
f

U  can be readily established. In particular, the homogeneous solution, 

denoted by fh
U , is obtained by the technique of assuming a solution form and this finally leads to 

solving a linear eigen problem. A selected efficient algorithm is adopted to accurately and efficiently 

determine all the eigenvalues and eigenvectors. To construct the particular solution of the unknown 

displacement fp
U  for the prescribed traction on the top of the layer (which is assumed expressible in a 

polynomial form), a well-known method of undetermined coefficients is applied. 

By using the general solution of the unknown displacement f
U  together with the boundary conditions 

at the left and right boundaries of the layer, it results in a system of linear algebraic equations 

governing the unknown data on the boundaries of the layer. Such results for the representative domain 

can then be used to generate three sub-systems of linear equations governing the unknown data on the 

boundary of the left part 
l , the center part 

c , and the right part 
r . Finally, by enforcing the 

continuity of the displacement and traction along the interface between the left part and the center part 

(i.e., the line bb ) and the interface between the right part and the center part (i.e., the line cc ) and the 

standard assembly procedure, it yields a final system of linear algebraic equations governing the nodal 

displacement data along the two interfaces bb  and cc . Once such primary unknowns are solved, the 

elastic field including the displacement and stress within the layer can be readily post-processed with 

the use of basic field equations (1) and the approximations (3).  

4.  Preliminary results  

To verify the proposed technique, a representative case associated with an elastic half-plane subjected 

to a constant pressure p  over the length 2a  and without the surface stress effect is considered since 

the exact solution of the elastic field is available for the comparison purpose. In the numerical study, 

three levels of discretization across the thickness of the layer (associated with 4, 8, and 16 quadratic 

elements) are adopted to confirm the convergence of computed numerical solutions and the ratio 

/ 200h a   is chosen to simulate the half-plane case. Results of non-zero stress components along the 

2x -axis are reported in Fig. 2(a) together with the exact solution. It is seen that the convergence of the 

computed numerical solutions and the excellent agreement with the reference solution are observed.    

To further demonstrate the capability of the proposed technique to handle nano-scale problems with 

the surface stress effects, consider an elastic layer of the thickness 8h    (where   is an intrinsic 

length scale of the material defined in [5, 6]) under the constant pressure p  over the length 2a   . 

The material properties for the bulk and the surface used in the numerical study are taken from [6]. 

Converged results of the stress components along the 2x -axis obtained from the proposed technique 

are reported in Fig. 2(b) for the two cases (with and without surface stresses). It is apparent that the 

presence of the surface stresses can significantly alter the elastic response of the layer when the 

characteristic length of the problem is comparable to the material length scale  .    
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Figure 2. Non-dimensional stress field of (a) elastic half-plane and (b) elastic layer 

5.  Conclusion 

An efficient and accurate numerical technique based on SBFEM has been successfully implemented to 

determine mechanical response of an elastic layer under the surface loading and surface stress effects. 

Based on results from a preliminary numerical study, the proposed technique has been found 

promising and computationally robust.  The proposed technique will be used to solve more 

complicated problems including nano multilayer media and functionally graded material.  
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