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Abstract. Structural control under the serviceability limit state is a requirement of design codes 

to ensure the durability of structural elements. As it is possible to consider fibers to be 

reinforcement in concrete, UHPFRC can be used to guarantee properly distributing cracks and 

limiting crack width in the serviceability limit state. This research presents an experimental 

testing method for direct tensile tests on UHPFRC specimens. The results obtained from the 

proposed method, such as the specimen’s average tensile stress-strain curve, tensile stress in 

concrete, number and width of cracks, can be used to consider the behavior and design 

requirements of UHPFRC under serviceability conditions. 

1.  Introduction  

Ultra high-performance fiber-reinforced concrete (UHPFRC) is a material with high compression stress, 

and great ductility and toughness due to the inclusion of steel fibers. The addition of fibers to the concrete 

matrix leads to significant energy being absorbed and helps control crack opening [1,2]. The presence 

of fibers in cracks limits the width of cracks, and results in their proper distribution and increases their 

serviceability [3,4]. In all concrete structure design codes, controls related to the serviceability state and 

cracking control are important. Many research works have been conducted to study only the tensile 

behavior of UHPFRC [5–9]. They have focused on the mechanical properties of UHPFRC without 

reinforcements. However in real structural elements, concrete is usually accompanied by reinforcement. 

One method for recognizing this behavior is to test the direct tensile tie (a prismatic concrete member 

with a high length-to-width ratio and a reinforcing steel bar in the center of the cross-section). In order 

to understand the tensile behavior of concrete as a simple material, and of concrete combined with 

conventional reinforcement, parameters like crack width, distance between cracks and tension stiffening 

have been studied for many years [10–13]. As adding fibers to concrete limits the cracking phenomenon 

by narrowing cracks with short distances among them, it is important to analyze how the aforementioned 

parameters could be affected when UHPFRC is combined with a steel bar. In recent years, very few 

studies have analyzed the tensile behavior of UHPFRC by including steel bar reinforcement [14–16].  

The present paper focuses on providing an appropriate testing method to investigate the UHPFRC 

cracking behavior under the serviceability limit state (SLS). For this purpose, tensile tie experiments 

were proposed and developed. A new method is provided to measure the ability to transfer tensile force 

to a concrete member. Some parameters were evaluated by this testing method, such as the element’s 
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average tensile stress-strain diagram, the element’s strain behavior in small segments and the 

development of cracks and their frequency. 

2.  Research Significance  

Performing a direct tensile test on reinforced concrete specimens and applying tensile force to concrete 

specimens are not easy tasks. This present work provides a simple testing method for studying the 

behavior of reinforced UHPFRC under uniaxial tension load. This method is able to analyze the 

multicracking behavior of a UHPFRC tensile tie using different types of measurements equipment. It 

also helps us to analyze the interaction between concrete and steel reinforcement and the possible 

synergy between them under SLS.  

3.  Experimental Program 

The experimental program was considered for one type mixture to evaluate the behavior of the UHPFRC 

tensile tie. Due to the capacity limitation of the laboratory mixer and the number of molds, five batches 

with the same dose were prepared (C1 to C5). The mixture design of UHPFRC is reported in Table 1. 

The achieved average 28-day compressive strength test of concrete cubs of 10 cm x 10 cm was 158.41 

MPa and the average Young’s Modulus was 48.88 GPa. The length and diameter of applied steel fibers 

in this study were 13mm and 0.2mm respectively and their tensile strength was more than 2000MPa. 

 

Table 1. The UHPFRC Mixture Design. 

Component Content (kg/m3) 

Cement I 42.5 R/RS 800 

Silica Fume 940 D Elkem UD 175 

Silica Flour U-S500 225 

Fine Sand 0.5 mm 302 

Medium Sand 0.6-1.2 mm 565 

Water 160 

Superplasticizer, Viscocrete 20 HE 30 

Fiber 160 

 

All the specimens were made as follows: the considered specimen length was 1000 mm and a central 

bar was located over the entire element with a length of 1450 mm. Two complementary rebars were 

located at both ends with a length of 450 mm. These reinforcement bars were welded to the main bar. 

This experimental research was conducted for one cross-section type (i.e. 80 × 80 mm) and three tie 

series with rebars ratios of 1.23 %, 1.77% and 3.14% (rebars were 10 mm, 12 mm and 16 mm). The 

nominal yield stress of the rebars was 500 MPa. To identify specimens, the first number represents the 

reinforcement diameter, whereas the second number refers to the number of series per specimen; e.g., 

for the tensile tie with a 10-mm reinforcing bar, the ID specimens were named (T-10-1), (T-10-2) and 

(T-10-3). Figure 1. illustrates specimen details.  

During the manufacturing procedure, an attempt was made to locate the rebar exactly on the center 

section to avoid eccentricity and bending effects. Specimens were stored in a curing chamber at 95% 

relative humidity and a temperature of T = 20±2°C until 2 or 3 days before testing. UHPFRC was cast 

horizontally so that the casting process would start from one extreme to the other extreme by applying 

a uniform velocity to ensure a good alignment of the steel fibers in the concrete mixture.  
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Figure 1. Specimen reinforcement details (units in mm). 

4.  Experimental setup and method 

4.1.  Description of the test system  

In order to perform this test, a 2-meter steel structural frame was used, as outlined in [17] ‘Figure 2.a’. 

This structure was made using two plates whose thicknesses were 5 cm on both extremes, along with 

four 60 × 60-mm rectangular tube sections of 8 mm thickness. As tensile force had to be transferred to 

the specimen, two two-piece steel jaws (2 mm high) with indented corrugations were used as shown in 

Figure 2.b. 

In order to prevent the main bar from yielding and failing on both ends without concrete, two 45-cm 

long rebars were used in the external region of the specimen, and penetrated 22.5 cm into the concrete 

specimen (Figure 1). The test zone lay in the center part of the member where only one rebar existed.   

As previously mentioned, two st52 steel jaws were used to transfer tensile force from the system to both 

the concrete specimen and the ending reinforcing bars. Each jaw consisted of two segments with six 

high-strength bolts whose diameters were 13 mm. By tightening these bolts, tensile force was transferred 

by the hydraulic jack to the bar embedded in the concrete specimen because of the frictional force 

between the rebar and the interior side of the jaw. In order to distribute the force caused by tightening 

the bolts uniformly, this process was done in a zigzag manner. Figure 2. b. provides details of the jaw 

and the assembled connection.  

Hydraulic jacks are designed as cylinders and a bar can be passed to their centers. A Ø20-mm high-

strength steel bar (fy=1000MPa) was used to transfer the tensile force caused by the movement of the 

hydraulic jack. At the end of these bars, a circular steel rod end bearing was embedded (Figure 2.c). At 

both ends of the jaws, there was a Ø25-mm bolt that allowed the steel jaw to be connected to the bars 

through the steel rod end bearing. This connecting system displayed a hinge behavior and allowed 

bending or twisting at both specimen ends (Figure 2.d). 

4.2.  Instrumentation and experimental procedure  

As previously mentioned, this experiment aimed to study the tensile behavior of the UHPFRC reinforced 

tie. To conduct this study, the behavior of the member was studied at both the general and local levels. 

To investigate the general behavior, displacement transducers were employed, while local behavior was 

evaluated using demountable mechanical gauges (DEMEC points). The position of the measurement 

equipment is illustrated in Figure 3. 

For this purpose, specimens were tested under the displacement control. On both sides of the concrete 

specimen and on four surfaces, four 35-cm long displacement transducers were installed (Figure 3). In 

this method, it was assumed that the strain of the rebar located in the center of the section would equal 

the average value of the strains recorded for four external surfaces. For the local level measurement, #16 

DEMEC steel discs were installed at a 1-cm distance from the upper and lower edges on each specimen 
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edge (see Figure 3). The reason for using four displacement transducers on the four specimen surfaces 

was to study the possible bending and rotations due to asymmetric cracks occurring. 
 

 

Figure 2. a) Tensile test equipment. b) Jaw details. c) rod end bearing. d) assembled Jaw 

connection.  

 

 

 

Figure 3. Measurement equipment: positions of the displacement transducers and the DEMEC points 

along the element. 
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After installing the concrete specimen within the test equipment, force was applied by the hydraulic jack 

and the increase in force was stopped in strains of 0.03‰, 0.05‰, 0.10‰, 0.15‰, 0.5‰, 1‰, 1.5‰ 

and 2‰. Then the changes in length between the DEMEC disks were measured. While testing, an 

attempt was made to maintain force at constant levels. 

As the average displacement recorded by the displacement transducers reached an equivalent strain 

of 2‰, the experiment was stopped, and the number of cracks on the upper and lower edges between 

the DEMEC points was recorded by plotting the crack pattern on the specimen surfaces. For the 

specimens containing the ∅16 bars, it was difficult to reach the tension strain of 2‰ because the bars 

slipped at a high load value. Therefore, the experiment continued for these specimens until a 

displacement corresponding to a strain of 1.5‰ took place. 

5.  Results and Discussion 

A tensile stress-strain diagram of specimens was obtained from the average of the four displacement 

transducers located on the left and right specimen sides. Figure 4. illustrates the displacement-force 

curves due to the tensile force on both the left and right sides of specimen T-12-2, respectively. 

 

 
Figure 4. Displacement-force relationship for specimen #T-12-2. 

 

 

 

Figure 5. Tensile stress-strain diagram for specimen #T-12-2 and the 

average values. 
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Figure 6. Stress-strain diagram based on the 

rebar area for tie 8x8cm with the Ø10-mm bar. 

 Figure 7. Stress-strain diagram based on the 

rebar area for tie 8x8cm with the Ø12-mm bar. 

 
As previously stated, a slight difference in the diagrams was due to asymmetric cracks appearing on the 

specimen’s cross-section, as well as very small localized bending because of the difference in the 

cracking inertia along the member. Figure 5. presents the average tensile stress-strain curve for both the 

specimen’s left and right sides. These two diagrams are similar to one another, and the average behavior 

diagrams for the specimen’s left and right sides can be described as the tensile behavior of the tensile 

tie. The stress expressed in this diagram is shown as the equitant steel stress, which was obtained by 

dividing the total tensile force by the area of the reinforcing steel. The results obtained for each series 

of specimens are shown in Figures 6, 7 and 8. 

As the equivalent stresses shown in the above diagrams are based on the area of the reinforcing steel, 

the numerical value of this stress is higher for the bars with smaller areas. As observed in the diagrams, 

the tie’s stress-strain behavior is relatively in parallel to that of the steel bar after the member cracked 

under tensile force, and reducing of the stiffness and change in slope of the stress-strain diagram.  

 

 
Figure 8. Stress-strain diagram based on the stress 

on rebar area for tie 8x8cm with the Ø16-mm bar. 

 
Regarding the above diagrams, the elastic stiffness in the linear region varied from 39 to 42 GPa for the 

ties with the Ø10-mm bar, from 19 to 25 GPa for the ties with the Ø12-mm bar, and from 15 to 18 GPa 

for the ties with the Ø16-mm bar. By assuming the simultaneous participation of concrete and steel in 

tension and with the same strain, it was possible to obtain tensile stresses in concrete by subtracting the 

strain-stress curve of the bare rebar from the total stress-strain curve; e.g., the tensile stress of concrete 

is calculated in Figure 9. The average tensile stresses for all three tie series are shown in Figure 10. It 
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should be noted that no significant strain-hardening behavior was observed for UHPFRC. With this 

diagram, it is possible to compute the tensile stresses that correspond to the desired strains and to 

compare them with the allowable SLS values. 

 

 

 

 

Figure 9. Tensile stress-strain curve for 

specimen T-10-1 (stress based on concrete area). 

 Figure 10. Average tensile stress-strain curve 

calculated according to the concrete area for all 

three specimens per series. 

 
It should be noted that due to the asymmetry and uniformity of cracking in concrete, strains would not 

be identical on the element’s four edges.  

By way of example, for specimen T-12-2 at the force level of 2.31 kN, the average value of the strains 

of all the elements obtained by DEMEC was ε = 0.066 ‰  and the average value obtained by the 

displacement transducer was ε = 0.059 ‰, with a difference of 10.5%. 

It is worth noting that in some specimens, it was not possible to record the increased length using 

DEMEC within the required strain intervals because cracks and a sudden increase in the longitudinal 

strain occurred. 

At the end of the test and after accessing the tensile strain of 2 ‰ (1.5 ‰ for the specimen with the Ø16-

mm bars), the number of cracks between the disks installed on the specimen’s six edges was recorded 

by wetting the surface with water. Due to the rough surface created on the specimen surface that did not 

come into contact with the steel mold, no cracks were seen (see Table 2).  
 

Table 2. The average number of cracks recorded between DEMEC disks and the average width of 

cracks for specimen T-12-2 (force value 2.31kN, strain obtained= 2 ‰). 

Point Number   
Total Number of 

Cracks 

Achieved 

Elongation (mm) 

Mean Crack 

Width (µm) 

Up side 
Edge1 70 0.632 9 

Edge2 91 0.632 7 

Front Side 
Edge1 69 0.632 9 

Edge2 86 0.632 7 

Back Side 
Edge1 92 0.632 7 

Edge2 56 0.632 11 

  Mean 8 

 

The number of cracks and the average crack widths are shown for specimen T-12-2. A large number of 

cracks and the short distance among them are some of the important characteristics of UHPFRC, as 

evidenced by the crack pattern shown in Figure 11. 
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Figure 11. Cracks pattern for specimen T-12-2. 

 

6.  Conclusion 
 

In order to study the necessary UHPFRC design requirements under SLS, a new testing method was 

developed to perform direct tensile tests. This method is able to examine the behavior of these elements 

under serviceability conditions and can determine tensile strains from the multicracking phase to the 

localized crack development stage. 

In this method, the average tensile stress-strain curve of tensile ties was obtained by installing four 

displacement transducers on the specimen’s four surfaces on both sides. Some parameters were 

obtained, such as the stiffness of elastic region, the tensile stress-strain diagram of concrete, and the 

width and number of cracks. The tensile strain on the 5-cm elements was acquired by installing DEMEC 

equipment on the four edges of the cross-section. Using the data obtained by this method, the tensile 

strain variations along the member were studied. In the final loading stage, after reaching the strain of 2 

‰ recorded by the displacement transducers, the cracking pattern along the specimen, the number of 

cracks on each 5-cm element on four edges and the average crack widths of the specimens were obtained. 

The proposed testing method and the obtained results will enable the study of UHPFRC behavior under 

direct tension under serviceability conditions.  
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