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Abstract. The conventional hydrothermal method was applied to synthesize two microporous 

Faujasite-type zeolite (FAU) with model substances (sodium silicate, sodium hydroxide and 

aluminium). The chemical formula of FAU-1 and FAU-2 were 

0.99Na2O·Al2O3·4.07SiO2·5.7H2O and 1.03Na2O·Al2O3·3.8SiO2·8H2O, respectively. The 

isoelectric points (IEP) were around 4.5, and the surface area were 244.50 m2/g and 485.85 

m2/g. The adsorption kinetics, intra-particle diffusion and isotherms of methylene blue (MB) 

on two FAUs were reported from batch adsorption tests. The adsorption obeys pseudo-first-

order model and reached equilibrium within 80 min. Intra-particle diffusion is the rate-

determining step and the removal decreased with the increase of pH. The adsorption follows 

BET model, indicating multi-molecular layer adsorption. The adsorption capacity of FAU-2 

towards MB is 147.19 mg/g, more than doubles that of FAU-1 (62.74 mg/g). Adsorption 

mechanism may include ion exchange, hydrogen bonding and hydrophobic interactions. This 

study may provide guidance for the hydrothermal synthesis of FAU and the universal 

theoretical basis for its practical application in MB contaminated wastewater treatment. 

1. Introduction 

Water pollution has become a public concern in recent decades with the rapid economic and industrial 

development. Dye pollutants have been discharged to the water body and other environmental media 

by various industries, such as textiles, dyeing and printing [1], leading to adverse effects on 

ecosystems and health risks to living organisms due to their toxicity [2]. Methylene blue (MB) is the 

most widely used organic dye and a typical pollutant used to simulate dye wastewater. Although it is 

not highly toxic [3], the exposure can do harm to eyes, respiratory, nervous and mental systems, and 

produce a burning sensation, increase sweating and cause methemoglobinemia [4]. 

The removal of MB has been investigated by many physico-chemical and biological treatments 

[2,3,5]. Adsorption has been proved to be a sustainable and effective approach to decontaminate dye 

effluents [1,4,6] due to its low cost, no secondary pollutants, simple design and high efficiency. 

Activated carbon has been a commonly used adsorbent for dye abatement. However, the high cost, the 

existence of organic impurity and difficult regeneration limit its application. Therefore, it is critical to 

find out an economical, eco-friendly and efficient adsorbent and explore its adsorption mechanisms. 

Zeolites, as a class of nanoporous aluminosilicates with a large surface, high reactivity, low cost, 

molecular sieve properties and high ion exchange capacity, have been applied for the removal of a 

broad range of pollutants [7–9]. Synthetic zeolites, with high purity and controllable surface areas and 

particle sizes, are ideal adsorbents and the study of their adsorption mechanisms has universal 
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meanings. Faujasite-type zeolite (FAU) is one of the most important zeolites and should be an ideal 

candidate for dye removing. It has been extensively used in catalysis [10], separations [11], ion 

exchange [12] and petroleum and petrochemical industry [13]. However, there is a dearth of literature 

on its adsorption performance towards organic dyes. Compared with natural zeolites, synthetic zeolites 

have higher purity, more homogeneous particle sizes and controllable surface areas, thus are more 

suitable for the study of adsorption mechanisms. Therefore, FAU was selected as a typical zeolite and 

synthesized by the conventional hydrothermal method for MB removal. 

The objective of this study is to synthesize FAUs with model substances and discuss their 

adsorption mechanisms towards MB in order to provide the universal theoretical basis of the practical 

application of zeolites in cationic dyes decontamination. This study aims to 1) use model substances to 

synthesize two FAUs with different surface areas; 2) explore the detailed adsorption mechanisms 

towards MB; 3) discuss the effect of pH on the adsorption; 4) evaluate the effectiveness and feasibility 

of FAU in MB abatement. This study is expected to provide guidance for the hydrothermal synthesis 

of FAU and the theoretical basis of its practical application in MB contaminated wastewater treatment. 

2. Materials and methods 

2.1. Materials 

Na2SiO3∙9H2O, NaOH, aluminium powder, nitric acid, sodium hydroxide, sodium nitrate and 

methylene blue (C16H18ClN3S) were purchased from three companies: Sinopharm chemical 

reagent company, Tianjin Shentai chemical reagent company and Tianjin Kaitong chemical reagent 

company. The concentration of methylene blue was measured by UV-vis spectrophotometer 

(Shimadzu, UV 2450) at the wavelength of 664 nm. 

2.2. Synthesis of FAUs 

Na2SiO3∙9H2O (a g) was dissolved in b mL of distilled water with stirring to produce Solution A. c g 

of NaOH granular was dissolved in distilled water with stirring, followed by the addition of d g of 

aluminium powder slowly and stir for 1 h to produce NaAlO2 solution (Solution B). Subsequently, the 

filtered Solution B was added slowly into Solution A with continuous stirring in a pre-heated water 

bath at 30°C for 5 h. The produced white gel was transferred into an autoclave for aging at 30°C for 18 

h and then at 90°C for 36 h for aging and crystallization, respectively. The obtained samples were 

washed with distilled water and ethanol and dried at 70°C for 12 h. The values of a, b, c and d for 

FAU-1 and FAU-2 are listed in Table 1.  

Table 1. Experimental parameters for the synthesis of FAUs 

 a b c d 

FAU-1 13.8 30 1.6 0.54 

FAU-2 6.9 50 0.4 0.27 

2.3. Characterization of synthetic FAUs 

Characterization included X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), 

zeta potential and BET analysis. A Bruker-AXS D8 ADVANCE X-ray diffractometer with a Cu target 

(Kα=1.5432 Å) was used to collect XRD powder patterns for the samples. XRD patterns were run at 

40 kV and 30 mA with 2θ angles of 10° and 70° and the scanning speed was 0.02°/s. The FT-IR 

measurements (Vertex 70) were recorded at 4000–500 cm-1. N2 adsorption/desorption isotherms were 

obtained at 350°C with a Quantachrome NOVA 2000e surface and pore size analyzer by a 

static adsorption procedure. Zeolite samples (0.01 g) were added to the solution with the solid/liquid 

ratio of 0.4 g/L and the ionic strength of 1 mM NaNO3 with pHs of 3-9.  

2.4. Adsorption of methylene blue (MB) 

Batch kinetic studies were carried out by adding 0.01 g of FAU into centrifuge tubes containing 25 mL 

0.01 mM of MB solutions. After shaking for a certain time (10 min, 30 min, 50 min, 60 min, 70 min, 

https://www.sciencedirect.com/topics/chemistry/pore-size
https://www.sciencedirect.com/topics/materials-science/adsorption
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80 min, 120 min, 150 min and 180 min), the tubes were centrifuged for 5 min. The MB concentration 

of the supernatant was then measured. FAU (0.01 g) was added to 25 mL solutions containing 

different MB concentrations (0.01, 0.1, 0.3, 0.4, 0.8 and 1 mM) to obtain the adsorption isotherms. 

The shaking time was 3 h. The effect of solution pH was examined by adjusting the initial pH of the 

solutions from 3 to 9 using 0.1 M HCl or 0.1 M NaOH. The MB concentration was 0.01 mM and 0.01 

g of FAU was used with a solid to liquid ratio of 0.4 g/L.  

3. Results and discussion 

3.1. X-ray diffraction (XRD) patterns 

XRD patterns in Figure 1 confirmed the synthesis of two FAU zeolites (Faujasite-Na) by the 

comparison with those of JCPDS (Joint Committee on Powder Diffraction Standards). From Figure 1a, 

the strongest peaks appeared at 27.769° and the composition of FAU-1 is 

0.99Na2O·Al2O3·4.07SiO2·5.7H2O with a Si/Al ratio of 2.0. The diameter was calculated as 111.5 nm. 

It was shown in Figure 1b that the strongest peak appeared at 23.6°. The composition of FAU-2 was 

1.03Na2O·Al2O3·3.8SiO2·8H2O with a Si/Al ratio of 1.9 with a diameter of 111.5 nm.  
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Figure 1. XRD patterns of synthetic FAU-1 (a) and FAU-2 (b) zeolites 

3.2. Fourier Transform Infrared Spectroscopy (FT-IR) 
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Figure 2. FTIR spectra of synthetic FAU-1 (a) and FAU-2 (b) zeolites 

The FTIR spectra of two synthetic FAUs are similar as shown in Figure 2. Two FAUs are loaded with 

the different amounts of water indicated by different intensities of absorbance peaks, one at 3435 cm-1 

due to O-H stretching vibrations and another at 1630 cm-1 due to O-H bending vibrations [14]. The 

peak at 3520±200 cm-1 was reported to be strongly interacting vicinal OH groups bound through the 

hydrogen bond [15]. Hunger et al. revealed that the difference in water absorption capacity of FAU 

zeolites depends on the different types of extra-framework cations and degrees of ion-exchange [16]. 

Therefore, the different amounts of water loaded in two FAUs may be explained by the different ion-

exchange degree in consideration of the same cations (Na+) in the framework of two FAUs. The water 

molecules were absorbed in FAU by the formation of cyclic hexamers which are linked with the 

framework of oxygen atoms by hydrogen bonding [17]. A band in the range of 1000 cm-1 was also 
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observed attributed to Si-O-Si asymmetric stretching vibration. Two peaks at 675 cm-1 and 737 cm-1 

are caused by Si-O-Si symmetric stretching vibration, while the peak at 455 cm-1 is due to O-Si-O 

bending vibration. In addition, the peak in 2350 cm-1 is attributed to O=C=O asymmetric vibration 

absorption, indicating the absorption of CO2. 

3.3. BET measurement 

The N2 adsorption isotherms and particle distribution of microporous FAUs are shown in Figure 3. 

The isotherms were identified as the II type isotherm, indicating hydrophilic materials [14]. FAUs 

have high affinity to water at low and moderate pressure. The surface areas of FAU-1 and FAU-2 are 

244.50 and 485.85 m2/g, respectively. The difference in surface area may come from the different 

Si/Al ratio and amounts of NaOH. Synthesis of FAU with different amounts of model substances need 

to be conducted to explore their effects on the change of surface area. 
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Figure 3. N2 adsorption/desorption isotherms of synthetic FAU-1 (a) and FAU-2 (b) zeolites 

3.4. Zeta potential 

Zeta potential was measured based on the mobility of electrophoresis. Zeta potential of zeolites 

depends on the solution pH, ionic strength and the Al content of the framework [18]. Figure 4 shows 

the zeta potentials of FAUs as a function of pH at room temperature. The isoelectric points (IEP) of 

FAU-1 and FAU-2 were found to be around 4.5, meaning that their surface was mainly positively 

charged below a pH of 4.5 and became negative at higher pHs. The negative charges on the surface 

come from the isomorphous replacement of Al for Si in the lattice, i.e. permanent negative charge [19], 

as well as the adsorption of OH- at different pHs. 

3.5. Adsorption of methylene blue (MB) 

3.5.1. Adsorption kinetics. Pseudo-first-order, pseudo-second-order models were used to fit the 

experimental data. Pseudo-first-order and pseudo-second-order models are most commonly used 

kinetic models. The coefficient of determination (R2) and Akaike Information Criterion (AIC) were 

applied for model selection. A model with highest R2 and lowest AIC values should be selected [7]. 

The fitting results are shown in Figure 5 and Table 2. Where qe and qt are the adsorbed amount of MB 

at equilibrium and at time t, respectively; Ce is the equilibrium MB concentration; k1 and k2 are the 

rate constants; t1/2 is the time to uptake half of the amount adsorbed at equilibrium; D is the minimum 

MB removal asymptote; A is the maximum removal capacity. All kinetic models could describe the 

MB adsorption onto FAUs with R2>0.85. However, pseudo-first-order models have the lowest AIC 

values for both FAUs. Therefore, the MB adsorption onto FAUs follows pseudo-first-order model. 

The MB adsorption reached equilibrium within 80 min for both FAUs. 
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Figure 4. Zeta potential of two synthetic FAUs as 

a function of pH 

Figure 5. Adsorption kinetics of MB 

adsorption on two synthetic FAUs 

3.5.2. Weber and Morris intra-particle diffusion model. Weber and Morris intra-particle diffusion 

model was applied to fit the plot of qt against t1/2 to describe the intra-particle diffusion process. The 

equation and piecewise linear fitting regression results are presented in Table 2 and Figure 6. Where ki 

(mg/g/min1/2) is the rate constant, and c is the intercept which suggests the thickness of the boundary 

layer. That is, the higher value of c indicates the greater effect of the boundary layer. The typical mass 

transfer process [20] of adsorbate from the solution to the binding sites within the adsorbent particles 

is shown in Figure 7, in the order of from the solution to the film, film diffusion, intra-particle 

diffusion and adsorption [7]. 
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Figure 6. Intra-particle diffusion plot of MB 

adsorption on two synthetic FAUs 

 Figure 7. The mass transfer process of MB 

[20] 

From Figure 6, there are three parts in the intra-particle diffusion plot. The first part indicates film 

diffusion at the outer surface where the MB molecules overcame the boundary layer resistance. The 

second part describes the intra-particle diffusion, including pore diffusion and surface diffusion, where 

the MB molecules have entered the pores of FAUs. Therefore, the intra-particle diffusion period was 

50-80 min and the value of ki,2 in this part was defined as the intra-particle rate constant, 0.51 and 0.46 

mg/g/min1/2 for FAU-1 and FAU-2, respectively. The last flat step is the equilibrium period. The 

intercept of the first portion is zero, i.e. the line covering the first part passed through the origin, 

indicating that intra-particle diffusion controlled the rate of MB adsorption on FAUs. That is, the 

resistance of the boundary layer is negligible, and film diffusion is very fast and can be ignored. FAU 

has a structure like a tiling of sodalite cages connected by double six-ring units. It is a typical 

microporous zeolite and the diameters of void space are 11.24 Å and 7.35 Å. Although the molecular 

diameter of MB is about 7.7 Å [21], the actual molecule dimension of MB is 

16.32 Å × 5.64 Å × 5.41 Å in the solution due to the solvent effect [22]. This means that it is hard and 

time-consuming for MB molecules to enter the inner pores of FAU. Therefore, the adsorption of MB 
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may mainly occur on the outer surface and intra-particle diffusion process was non-negligible and 

controlled the adsorption rate. 

3.5.3. Adsorption isotherms. The commonly used Langmuir, Freundlich and modified form of BET 

isotherm models were applied to fit the experimental data at different initial MB concentrations (0-0.8 

mM) as shown in Figure 8 and Table 3. The high R2 values (>0.95) indicated that the MB adsorption 

onto FAUs obeys the BET model, indicating the multi-molecular layer physical adsorption. The 

adsorption capacity of FAU-2 towards MB is 147.19 mg/g, more than doubles that of FAU-1 (62.74 

mg/g) (Table 4). The adsorption of MB on zeolites and other adsorbents are compared as shown in 

Table 5. The adsorption capacities of MB molecules by surface area were calculated as 4.83×1017 and 

5.70×1017 m-2 for FAU-1 and FAU-2, respectively. FAU-2 with a slightly lower Si/Al ratio has an 18% 

higher adsorption capacity excluding the effect of surface area. Therefore, the surface area is a main 

influencing factor and the Si/Al ratio may also have an effect on the adsorption capacity. The 

adsorbent with larger surface area provides more binding and adsorptive sites on the surface, leading 

to higher adsorption capacity. Although MB molecules are hard to enter the inner pores of FAU and a 

few adsorption sites in the inner surfaces of FAU are not available for MB molecules, the surface areas 

measured by BET from the N2 adsorption isotherms in this study are mainly the external surface area, 

which reflects the MB adsorption on outer surface of FAU. In addition, the effect of Si/Al ratio may be 

attributed to the fact that more silica in the structure is replaced by aluminium on the surface of FAU-2, 

resulting in more negative charges and adsorption sites for MB. 
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Figure 8. Adsorption isotherms of MB adsorption on two synthetic FAUs 

 

Table 2. Kinetics model parameters for MB adsorption on two FAUs 
Models Equations Parameters FAU-1 FAU-2 

Pseudo-first-order 𝑞𝑡 = 𝑞𝑒(1 − 𝑒−𝑘1𝑡) 

qe (mg/g) 8.72±1.21 8.39±1.08 

k1 (min-1) 0.013±0.004 0.013±0.004 

AIC 4.30 3.19 

R2 0.895 0.894 

Pseudo-second-order 

𝑞𝑡 =
𝑞𝑒
2𝑘2𝑡

1 + 𝑞𝑒𝑘2𝑡
 

𝑡1
2
=

1

𝑘2𝑞𝑒
 

qe (mg/g) 12.68±2.84 11.98±2.46 

k2 (g/mg/min) (7.42±4.90)×10-4 (8.42±5.19)×10-4 

AIC 5.43 4.30 

t1/2 (min) 106 99.14 

R2 0.882 0.883 

Weber and Morris 

intra-particle diffusion  
𝑞𝑡 = 𝑘𝑖𝑡

1/2 + 𝑐 

Intra-particle diffusion 

period 
50-80 min 

ki,2 (mg/g/min1/2) 0.41±0.02 0.44±0.02 

C 0 0 

R2 0.95 0.94 
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Table 3. BET isotherms model parameters for MB adsorption on two FAUs 
Models Equations Paramete

rs 

Definition FAU-1 FAU-2 

Langmuir 
𝑞𝑒 =

𝑄0𝑏𝐶𝑒
1 + 𝑏𝐶𝑒

 

𝑅𝐿 =
1

1 + 𝑏𝐶0
 

Q0 
(mg/g) 

Maximum adsorption 
capacity 

428.06±271.61  

b 

(L/mmol) 

Rate of adsorption 0.73±0.67  

RL Equilibrium parameter  0.99  

R2  0.93 Failed 

Freundlich 
𝑞𝑒 = 𝐶𝑒

1
𝑛𝐾𝐹 KF 

(mg/g) 

Adsorption capacity 188.46±17.91 705.16±59.63 

1/n 

A measure of 

adsorption intensity or 

surface heterogeneity 

1.33±0.24 0.96±0.09 

R2  0.94 0.99 

BET 
qe = qm

KSCe
(1 − KLCe)(1 − KLCe + KSCe)

 qm (mg/g) 
Theoretical adsorption 
capacity 

62.74±14.54 147.19±13.65 

KL 

(L/mmol) 

Equilibrium constants 

of first and second 

layer adsorption 

0.82±0.10 1.22±0.05 

KS 
(L/mmol) 

13.63±11.69 7.87±1.82 

R2  0.97 1.00 

 

Table 4. Adsorption capacities of FAUs toward MB 
Sample Formula Surface area Si/Al Adsorption capacity 

FAU-1 0.99Na2O·Al2O3·4.07SiO2·5.7H2O 244.50 m2/g 2.0 62.74 mg/g 4.83×1017 m-2 

FAU-2 1.03Na2O·Al2O3·3.8SiO2·8H2O 485.85 m2/g 1.9 147.19 mg/g 5.70×1017 m-2 

 

Table 5. Comparison of adsorption properties of MB with other adsorbents 
Adsorbents qm (mg/g) Kinetic model Isotherm Reference 

Fly ash zeolite NaP1  Pseudo-2nd-order Freundlich [23] 

Canola residues 11.25 Pseudo-2nd-order Sips [24] 

Coconut husk-based activated carbon 434.78 Pseudo-2nd-order Langmuir [25] 

Bentonite/zeolite-NaP composite 36.23 Pseudo-2nd-order Langmuir [26] 

NaA zeolite 64.8 Pseudo-1st-order Langmuir [27] 

Mordenite 0.026 Pseudo-2nd-order Langmuir [28] 

Treated clinoptilolite 12.15 Pseudo-2nd-order Langmuir [2] 

zeolite 22 Pseudo-2nd-order Temkin [29] 

Graphene-carbon nanotube composite 65.79 Pseudo-2nd-order Langmuir [30] 

FAU-1 62.74 Pseudo-1st-order BET This study 

FAU-2 147.19 Pseudo-1st-order BET 

3.5.4. Effect of pH. The solution pH is a critical influencing factor for surface property changes, such 

as surface charges of adsorbents and ionization of adsorbates as shown in Table 6. As shown in Figure 

9, the MB adsorption on FAU-2 was higher than that on FAU-1 at all pHs. The MB adsorption on 

FAUs was the highest in acidic conditions, and the adsorption decreased with the increase of solution 

pH in the range of 3-9. This makes it possible to regenerate the saturated FAU at alkaline pHs, which 

is meaningful for the practical application of FAU in MB-contaminated water treatment. Generally, 

the adsorption characteristics at different pHs depend on the physiochemical properties of both 

adsorbent and adsorbate. The surface charge of the adsorbent changes at different pHs due to different 

IEPs. Different adsorbates have different pKa (acid dissociation constant) values, indicating a different 

degree of ionization. In addition, the functional groups of the adsorbents may also dissociate at 

different levels [31], especially for the surfactant-modified adsorbents. For example, Rida et al [29] 

revealed that the MB adsorption onto zeolite increased with the increasing pH in the range of 2-4.5, 

and decreased in the range of 4.5-12. This is likely due to the fact that the optimal pH is close to the 

pKa (3.8) of MB [3]. In comparison, Jin et al. reported that the MB adsorption on ZSM-5 increased 

with the increasing pH in the range of 4-5 and then remained steady due to the competition between 
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H+ and cationic MB for adsorption sites and negatively charged surface under alkaline conditions, 

while this is different from the adsorption of anionic orange II, the adsorption decreased with the 

increase of pH due to the electrostatic repulsion between OH- groups on the surface of ZSM-5 and 

anionic orange II. The adsorption of MB on surfactant modified ZSM-5 remained constant with the 

increase of pH [1].  
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Figure 9. Effect of pH on MB adsorption 

 

Table 6. Surface charges of FAU and MB 

pH FAU Dominant MB species 

pH<3.8 + MBH2+ 

pH=3.8 + 50% MBH2+; 50% MB+ 

3.8<pH<4.5 + 
MB+ 

pH>4.5 − 

The adsorption of MB decreased with the increase of solution pH in Figure 9, which is similar to 

that of Tsai et al. [32]. They synthesized a hydrophilic zeolite by hydrothermal method, and the 

decrease of adsorption toward MB with the increasing pH was explained by the increased surface area 

at lower pH caused by the interaction between H+ and zeolite. In this study, the decrease of adsorption 

may be explained by the surface charges of FAU and MB species (Table 6). The divalent cation 

MBH2+ is the dominant form at pH<pKa of MB, while the main species is monovalent cation MB+ at 

pH>pKa (Equation (2)) [33]. As shown in Equation (3) and Table 7, dimers, trimers or higher 

aggregates of MB ((MB+)m) may also form and could be adsorbed on zeolites [34–36]. In addition, it is 

well known that in a heterogeneous system, such as mineral suspensions, surface micells (dimer and 

trimer or aggregates) could form well below those in homogeneous system [37]. Positive charges are 

predominance on the surface of FAU at pH<IEP and the surface is negatively charged at pH>IEP. In 

the structure of FAU, some silica in the silica sheet is replaced by aluminium, and Na+ acts to balance 

the produced net negative charges. As shown in Equation (4)-(8), when FAU is dissolved in the acidic 

solution, Na+ in the structure begins to dissociate and H+ at high concentrations neutralizes the 

negative charges. Afterward, H+ is replaced by cationic MB species via ion exchange, resulting in a 

high adsorption. The complexation constants of MB with silanol groups on the surface of SiO2 have 

been calculated in our previous study [38], and those between MB and aluminol groups need to be 

explored further in future. In comparison, silanol and aluminol groups could dissociate at neutral or 

alkaline conditions, making zeolites negatively charged. These negative charges on the surface of 

FAU may be neutralized by more Na+ at higher pHs due to the addition of NaOH and monovalent 

MB+ (Equation (9) and (10)), leading to the decreasing MB adsorption. Therefore, ion exchange may 

make a dominant contribution to the adsorption of MB onto FAU. 

MBH2+  MB+ + H+     pKa=3.8                                                                             Equation (2) 

m MB+  (MB+)m          (m>1)                                                                                Equation (3) 

At acidic conditions: 

≡XnONa   ≡XnO- + Na+    (X=Si, Al; n=1, 2)                                                         Equation (4) 

≡XnO- + H+ 


  ≡XnOH                                                                                             Equation (5) 

2 ≡XnOH + MBH2+  (≡XnO)2MBH+2 H+                                                             Equation (6) 
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≡XnOH + MBH2+  ≡XnOMBH+ + H+                                                                   Equation (7) 

≡XnOH + MB+  ≡XnOMB + H+                                                                            Equation (8) 

At alkaline conditions: 

≡XnO- + Na+  ≡XnONa                                                                                          Equation (9) 

≡XnOH + MB+  ≡XnOMB + H+                                                                            Equation (10) 

 

Table 7. Structures and wavelengths of different MB species 
Species Structure Wavelength (nm) 

MB+ 

 

664 [42] 

MBH2+ 

 [48]a 

741 [42]; 763 [41] 

(MB+)2 

[48]a 

605  [41]; 697 [42] 

(MB+)3  580 [42]; 575 [41] 
a one possible structure 

3.5.5. Adsorption mechanisms. From the results of adsorption kinetics, isotherms and the effect of pH, 

the MB adsorption onto FAUs is the multi-molecular layer physical adsorption and the intra-particle 

diffusion is the rate-controlling step. It was reported that MB could be adsorbed on carbonaceous 

nanomaterials by non-covalent forces, such as hydrogen bonding, electrostatic interactions, π–π 

stacking, van der Waals forces and hydrophobic interactions [39]. The MB adsorption on FAUs in this 

study may be due to the combined approaches, i.e. ion exchange, hydrogen bonding and hydrophobic 

interactions. Firstly, as explained in Section 3.5.4, cationic MB species (MBH2+, MB+)could be 

adsorbed on the surface of FAU via ion exchange, especially at acidic conditions when there are 

divalent ion MBH2+. Secondly, hydrogen-bond interaction (O−H∙∙∙N) may exist between the silanol 

and aluminol groups of FAUs and the electronegative nitrogen of MB [15,40]. After the adsorption 

sites on the surface are fully occupied, it may cause steric hindrance and residual MB species may 

interact with ≡XnOH via hydrogen bonding. Hydrogen bonding may also explain the multi-molecular 

layer adsorption of MB onto FAU. Thirdly, the presence of hydrophobic siloxane (-Si-O-Si-) groups 

[15] may attract the organic part of MB, increasing the adsorption of MB onto FAU via hydrophobic 

interaction.  

4. Conclusions 

In this study, two Faujasite-type zeolites (FAU) with different surface areas were synthesized by the 

conventional hydrothermal method. Batch adsorption tests were also conducted to investigate the 

adsorption kinetics, intra-particle diffusion and isotherms of methylene blue (MB) on two FAUs. The 

following conclusions could be drawn: 1) The adsorption obeys the pseudo-first-order kinetic model; 2) 

Intra-particle diffusion controlled the rate of MB adsorption on FAUs; 3) The adsorption follows BET 

isotherms model; 4) Adsorption mechanism may be mainly ion exchange combined with hydrogen 

bonding and hydrophobic interactions. 
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