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Abstract. The mechanical properties of viscoelastic materials are usually described by a 

rheological model composed of spring and dashpot in series or in parallel or their combination. 

The complex modulus as a function of angular frequency was firstly deduced, when fractional 

derivative rheological model is subjected to a sinusoidal perturbation in dynamic mechanical 

analysis (DMA) measurements. Then, the algebraic equations between the storage and loss 

moduli of the fractional Zener model in complex plane have been developed. The curve on the 

complex plane, a plot of loss modulus against storage modulus, is a repressed or distorted 

semicircle with its center below the real axis. The parameters of mechanical elements can be 

graphically estimated from its complex plane plot. The dynamic mechanical test of bituminous 

mixtures was carried out by frequency sweep over a wide range of 200 Hz to 0.02 Hz and its 

mechanical response can be described adequately by the fractional Zener model, whose 

element parameters are determined via geometric method. 

1. Introduction 

It is a common practice that creep and stress relaxation tests are used to measure the mechanical 

properties of viscoelastic material in time domain. In order to describe and imitate the viscoelastic 

behavior, rheological models have been proposed by an arrangement of basic elastic elements (springs) 

and viscous elements (dashpots) in series or parallel or their combination [1, 2]. The parameters are 

usually acquired through the time-dependent experimental data by fitting with a previously given 

rheological model. For the sake of simplicity and rapidity, measurement in frequency domain is 

developed on the basis of Laplace or Fourier integral transform. An oscillatory test has become very 

easy to implement with the advent of modern electronics. A sinusoidal stress or strain in a wide range 

of frequency is applied to the viscoelastic material, and the resultant mechanical response is monitored 

by using the controlled-stress mode or controlled-strain mode. The ratio of response and excitation 

(modulus or compliance) can be expressed as a complex quantity, which is function of loading 

frequency rather than time. 

This paper aims to present a graphical method for the determination of element parameters on the 

basis of complex plane analysis from dynamic mechanical analysis (DMA) measurements. The Zener 

model and its fractional derivative model are simple rheological models of being able to describe the 

mechanical behavior of viscoelastic solids [3, 4]. In dynamic mechanical experiments, the complex 

modulus functions of fractional Zener model were derived and the relations between the storage and 
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loss moduli were generated. A complex plane of different frequency points is plotted for determination 

of the parameters. The dynamic mechanical behavior of the typical viscoelastic material bituminous 

mixtures was investigated by a dynamic mechanical analyzer (DMA) through frequency sweep in a 

wide frequency range between 200 Hz and 0.02 Hz. These rheological output in complex plane format 

were examined to explore the element parameters. 

2. Theoretical background 

2.1. Dynamic mechanical analysis (DMA) 

For the sake of investigation of the viscoelastic characteristics of material, one may put a small 

sinusoidal signal excitation on it, and measure its response. In these oscillatory tests, samples are 

subjected to a periodically varying stress or strain. If the perturbation is strain, the corresponding 

linear response, stress, oscillates at the same angular frequency as the applied strain, but leads the 

strain by a phase shift [1, 2]. They can be given in complex notation by 

)exp( ωtεε* i0=   (1) 

)](exp[ δωtσσ* += i0
  (2) 

where ε0 and σ0 are the stain amplitude and stress amplitude, respectively, δ the phase shift, t the time 

in second (s), ω the angular frequency in radians per second (rad./sec), ω=2πf, f is the frequency in 

cycles per second (Hz), and i is the imaginary unit (i2=1). 

The ratio of the stress to the strain is the complex modulus, which can be expressed as 

EEδδ/εσ/εσE +=+==  iisin)(cos00 )(  (3) 

δεσE )cos/( 00=  (4) 

δεσE )sin/( 00=  (5) 

)(tan 1 E/Eδ = −
 (6) 

where Eʹ and Eʺ are the storage and loss moduli, the real and imaginary parts of E*, respectively. 

2.2. The response of fractional Zener model 

The Zener model is known as a simple viscoelastic solid model, which is a parallel arrangement of a 

spring with an elastic modulus Ep and a Maxwell element (a spring of elastic modulus E in series with 

a dashpot of viscosity η), as shown in Figure 1. 

E η

Ep

 
Figure 1.  Zener model. 

Its differential constitutive equation is given by 
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In the Maxwell unit, the ratio of a coefficient of viscosity η of a dashpot to an elastic modulus E of a 

spring is of time dimension and called relaxation time τ which describe stress relaxation. 

η/Eτ =  (8) 

By introduction of the term of relaxation time, equation (7) can be rewritten as 
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It is known that the ideal Zener model may be too simplified to correlate with the dynamic behavior of 
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practical cases. The inadequacy of the Zener model in the frequency domain is that the variations of 

theoretical dynamic mechanical responses with frequency are always larger than those of the 

experimental observations [5]. The behavior of this simple model can be improved by introducing the 

so-called fractional derivatives in the differential constitutive equation in which the customary time 

derivatives of integer order are replaced by derivatives of fractional order [3-5]. Therefore, the 

differential constitutive equation of the fractional Zener model may be given by [4, 5] 

α

α
α

α
α

t

tε
τEEtεE

t

tσ
τtσ

d

)(d
)()(

d

)(d
)( ppα

++=+  (10) 

The symbol α denotes the order of the differential equation and takes on a value between 0 and 1. If 

the order α equals 1, equations (9) and (10) become identical. The αth order time derivative of a 

function, say ε(t) is defined as [6] 
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where u is a dummy variable, and Г is the gamma function. 

The fractional time derivative of equations (1) and (2) are given by 
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The complex modulus of the fractional Zener model can be derived by substitution of equations (12) 

and (13) into equation (10) 
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Since 

/2)isin(/2)cos(i απαπα +=   (15) 

Equation (14) can be rearranged in the form 
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Separating the real and imaginary parts, complex modulus and its components can be expressed as 
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It can be found that 
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Equation (19) can be expressed as 
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Multiplying equation (20) by the trigonometric term cot (απ/2), equation (22) can be rewritten as 
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As the trigonometric relations 
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Then equation (24) becomes 
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For simplicity, we define 

/2/2 αππφ −=   (27) 

Finally, for the fractional Zener model, the relations between Eʹ and Eʺ can be described of the form 
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This is the equation of a circle of radius 

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2
, and its center on the negative side of the 

imaginary axis. The loss modulus versus storage modulus over a sufficiently wide range of angular 

frequency can be plotted in a complex plane as illustrated in Figure 2 in which A (Ep, 0), B (Ep+E, 0)，
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Figure 2. Complex modulus plane plot for 

fractional Zener model. 

When ω→0, Eʹ→Ep, and Eʺ→0. When ω→∞, Eʹ→(Ep+E), and Eʺ→0. We can see that the storage 

modulus increases from Ep up to (Ep+E). It is a right shift of Ep which is the elastic modulus of the 

parallel spring along the real axis from the origin. A semicircle is rotated clockwise at an angle of φ 

around the point A (Ep, 0). The angle φ by which such a semicircel is rotated depends on the fractional 

order α described in equation (27). It can also be regarded as a repressed semicircle, since the arc in 

the first quadrant is smaller than a full semicircle. 
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3. Determination of parameters 

As for the non-ideal solid model, 4 parameters E, Ep, η, and α need to be determined and their solution 

procedure consists of the following steps. 

(a) Determination of the spring constants. 

It is shown that the spring parameters are obtained from storage modulus asymptotes at low and 

high frequencies. From Figure 2, the parameters Ep and E can be immediately obtained by the 

intersections A and B.  

(b) Determination of the fractional order α. 

The angle of deflection φ shown in Figure 2 is determined by the fractional order α, described in 

equation (27). The value of φ may be precisely determined by the radius length 








φ

E

cos

1

2
 or the 

ordinate of the circle center 







− φ

E
tan

2
. Then, one may obtain an estimate of order α from the φ 

value using equation (29), the rewritten form of equation (27). 

φ/πα 21−=  (29) 

According to the above analysis, the parameters, E, Ep, and α can be determined adequately from 

geometric characteristics of the complex plane plot. 

(c) Approximate determination of the viscosity coefficient of the dashpot. 

It may be approximately evaluated from the experimental modulus data collected at a variety of 

frequencies. Equation (20) can be also rearranged to be in the form of a quadratic equation of ηα. 

0/2)]sin(/2)cos([2)( 222 =+−+ EEηαπEαπEEωηEω αααααα
 (30) 

Let 
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 (31) 

/2)]sin(/2)cos([2 απEαπEEωb αα −=  (32) 

EEc α = 2
  (33) 

Thus 

0)( 2 =++ cbηηa αα
 (34) 

The solution for the quadratic equation is therefore 

a

acbb
ηα

2

42 −−
=  (35) 

For the determination of η, it is necessary to solve an algebraic equation. Since the loss modulus Eʺ 

value at each experimental frequency can be obtained from the test, and the parameters E, Ep, and α 

have already been determined, equation (30) will be completely solved. For each angular frequency ω, 

two roots η1 and η2 will be provided as shown in equation (35). Only if it is real and possesses 

practical physical meaning, the viscosity coefficient value can be chosen as an effective result. There 

are minute variations in different roots determined by different frequency in the light of equation (30), 

in that experimental data are not completely on the semicircular arc. The mean value for viscosity 

coefficient of each angular frequency is applied as the final approximate result. 

4. Example 

4.1.  Experimental program 

4.1.1. Specimen preparation. Neat asphalt 60/80 penetration grade, and limestone aggregates of 

2.36mm as maximum size was employed for preparing asphalt mixtures. The asphalt mixtures were 

rolled in a mold of 300 mm×300 mm×50 mm with a wheel compactor. Thereafter, the sample was cut 
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to some small cuboid blocks, and then were cut to final prescribed dimensions, 60 mm in length, 15 

mm in width and 5.5 mm in height approximately. 

4.1.2. Dynamic mechanical analysis (DMA) test. The Dynamic Mechanical Analyzer Q 800, produced 

by TA Instruments, was employed in this work. The DMA Multi-Frequency-Strain mode was used, 

through varying the frequency from the high frequency (200 Hz) to the low frequency (0.02 Hz), 

covering 4 decades, with 12 points per decade. The three-point bending beam test in which a vertical 

deflection amplitude of 2 µm is applied to the specimen to remain in the linear viscoelastic (LEV) 

domain was selected. These tests were carried out on a constant temperature of 45°C. 

4.1.3. Experimental results. The experimental data of storage and loss moduli at different frequency 

are shown in Figure 3. The detailed results can be found in Table A.1 in Appendix A. 

  
Figure 3.  Storage and loss moduli at different 

experimental frequencies. 
Figure 4. Complex plane plot of loss modulus 

versus storage modulus. 
The frequency dependence of the loss modulus versus storage modulus are plotted in the form of 

complex plane diagram (see Figure 4), as a locus of points, where each data point corresponds to the 

storage and loss moduli at a different measurement frequency shown in Figure 3. Fitting the 

experimental data with a circular equation, one obtains 
222 13930)07301()9308( =++− EE  (36) 

with radius 13930, center (8930, −10730), and the intersection points (47,0) and (17813,0) on real axis, 

depicted in Figure 5. The experimental data shown in Figure 4 is found to be a part arc of a semicircle 

which is rotated at an angle of 50.4 degrees. It can be calculated by trigonometry. 

 
Figure 5. Fitting curve of complex modulus 

plane plot for asphalt mixtures. 

4.2. Parameters determination 

From the two intersections A and B, described in Figure 2 and Figure 5, one finds Ep=47 MPa and 
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E=17766 MPa. 

According to the length of the radius, we have 

10730
2

−=







− φ

E
tan MPa (37) 

in which, tan φ= 1.208, φ=0.879 in rad. Therefore, according to equation (29), α=0.440. 

The viscosity coefficient is calculated by solving the equation (30). The viscosity coefficient for 

each experimental frequency is shown in Table A.1 in Appendix A. The values of η1 for all the 

experimental frequencies are reasonable whereas those of η2, unreasonable, so one takes the average 

value of the former as the final approximate result, which is 0.22 MPa·s. 

All the parameter values are listed in Table 1. 

Table 1. Parameters of fractional Zener model. 

E 

(MPa) 

Ep  

(MPa) 

η 

(MPa·s) 

φ 

(rad.) 

φ 

(deg.) 
α 

17766 47 0.22 0.879 50.4 0.440 

5. Conclusions 

An algebraic connection between storage and loss moduli of the dynamic mechanical response for the 

fractional Zener model is proposed. Analysis of experimental data, loss modulus as a function of 

storage modulus, which yield a skewed semicircular arc with its center below the real axis in the 

complex plane, can provide estimates of the element parameters. The spring constants can be easily 

obtained by the two intersections on the real axis. The order of fractional differential operator can be 

determined through the angle by which such a semicircle is rotated via trigonometry method. 
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Appendix A. 

Table A 1. Experimental results and viscosity coefficient results for different frequency. 
f 

(Hz) 
Eʹ 

(MPa) 
Eʺ 

(MPa) 
η1 

(MPa·s) 
η2 

(MPa·s) 
f 

(Hz) 
Eʹ 

(MPa) 
Eʺ 

(MPa) 
η1 

(MPa·s) 
η2 

(MPa·s) 

200 2286 1522 0.27 745 2 314 218 0.19 10431443 

165 2158 1447 0.28 1052 1.7 293 201 0.19 14796052 

136 1986 1344 0.27 1588 1.4 269 182 0.18 22804093 

112 1838 1250 0.27 2371 1.1 249 164 0.18 36538330 

92 1705 1164 0.27 3530 0.93 240 153 0.18 50938542 

76.5 1580 1084 0.26 5158 0.77 220 138 0.17 78399338 

63 1459 1023 0.27 7342 0.63 206 126 0.17 119102674 

52 1328 937 0.26 11246 0.52 198 118 0.18 165932898 

43 1225 870 0.26 16511 0.43 181 105 0.16 262386858 

35.6 1119 805 0.26 24465 0.36 175 99 0.17 358579664 

29.4 1020 739 0.25 36832 0.29 168 93 0.18 520711863 

24.2 920 676 0.24 56195 0.24 159 85 0.18 763446218 

20 859 632 0.25 80569 0.2 152 80 0.19 1073630514 

16.5 765 562 0.23 130472 0.17 145 75 0.19 1448878894 

13.6 707 521 0.23 191173 0.14 138 70 0.20 2061328002 

11.2 654 483 0.23 278565 0.11 130 64 0.21 3222370492 

9.3 599 446 0.23 407188 0.09 125 60 0.22 4579308127 

7.7 545 404 0.22 624198 0.08 121 57 0.22 5659637667 

6.3 499 369 0.21 953078 0.06 113 52 0.23 9698864053 

5.2 465 341 0.21 1392114 0.05 110 48 0.24 13419416828 

4.3 418 303 0.19 2223611 0.04 105 45 0.25 19813789520 

3.6 395 283 0.20 3122613 0.03 104 40 0.26 33647920330 

2.9 366 259 0.20 4781854 0.02 98 36 0.30 65568094411 

2.4 336 235 0.19 7257789      
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