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Abstract. Fretting is a special wear mode that occurs in a contact subjected to minute relative 

motion by vibration or other perturbations. The solution of the slip-stick elastic contact is 

required to address the problem of tractions and stresses arising in a fretting contact. This 

solution may be particularly difficult to obtain for coated bodies, considering that, unlike the 

case of homogenous materials, the response of layered materials to unit load has not yet been 

expressed in closed form. However, explicit expressions, also known as the frequency response 

functions, have been derived in the Fourier transform domain. Considering that displacement 

and stress calculation in an elastic contact process yields convolution products arising from 

superposition of effects, the existing frequency response functions can be used to calculate the 

response of layered materials directly in the spectral domain, and subsequently transferred to 

the space domain. Once a method for elastic displacement calculation in layered materials is 

made available, the slip–stick elastic contact problem can be solved in the same manner as for 

homogenous materials. The contact problems in the normal and in the tangential direction are 

coupled, as opposed to the sliding contact model. The numerical solution allows for 

identification of the slip and stick regions, and of the corresponding contact tractions. The 

latter tractions can be subsequently used to assess the stress state in the coated body, and thus 

to formulate competent design decisions. 

1. Introduction 

Fretting wear and fretting fatigue play a chief role in decreasing the service life of machine elements 

subjected to oscillating tangential displacements arising in concentrated contacts. The theoretical 

framework of this tribological scenario involves the solution of the Cattaneo-Mindlin problem [1, 2], 

i.e. the problem of the mechanical contact under partial slip, in which the tangential force is not large 

enough to induce the macro sliding of the contacting bodies. While the contacting bodies are globally 

sticking, the established contact area comprises regions of stick, where corresponding particles on the 

two contacting boundaries undergo the same displacements, and regions of micro slip, where there 

exists relative displacement between the initially matching surface particles. The closed-form solution 

of the latter problem [1, 2] was obtained in the frame of Linear Theory of Elasticity under limiting 

assumptions: (I) the contact pressure is independent of the shear tractions (which is true for contacting 

bodies with similarly elastic properties), and (II) the contacting bodies are homogenous, isotropic and 

linear elastic. These assumptions are relaxed in the numerical study performed in this paper, aiming to 
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advance a simulation technique for the partial slip contact involving coated bodies. To our best 

knowledge, an analytical solution to the latter contact scenario has not been achieved, and its 

derivation may be difficult as: (I) the contact area and its evolution with the load level, as well as the 

contact tractions (pressure and shear), are a priori unknown; (II) the boundaries between the regions of 

stick and those of slip are also unknown, (III) the consideration of a coated body in contact implies 

that the contacting bodies are dissimilarly elastic, and consequently pressure is not independent of the 

shear tractions, and (IV) the elastic response of multi-layered materials to unit load (i.e., the Green’s 

functions) is only known in the frequency domain as the frequency response functions (FRFs).  

The simulation technique employed in this paper is known in the literature as a semi-analytical 

method (SAM) [3]. SAM implies the discretization of a surface region of the contacting body, as 

opposed to the finite element method that requires the meshing of the bulk. The SAM computational 

efficiency also derives from the use of spectral techniques [4, 5] to rapidly compute the convolution 

products yielding the displacement response of the contacting bodies. 

Gallego, Nélias and Jacq [6] first applied SAM in the study of the slip-stick contact problem. They 

solved repeatedly the contact problem in the normal direction while considering the change in contact 

conformity due to wear. A numerical technique for the partial slip contact considering tangential 

tractions was advanced by Chen and Wang [7]. Alternate numerical solutions were obtained by 

Gallego, Nélias and Deyber [8], and by Spinu and Glovnea [9]. Spinu and Frunza [10] investigated the 

hysteretic effects in the fretting contact between dissimilarly elastic materials, and proved that, due to 

the irreversibility of friction as a dissipative process, the load must be applied in small increments to 

correctly reproduce the path of the contact process. More recent, Spinu and Cerlinca [11] advanced a 

SAM-based numerical solution to the Cattaneo-Mindlin problem for viscoelastic materials. 

The mathematical description of displacements and stresses arising in layered materials pioneered 

with the work of Burmister [12]. The FRFs are the counterpart of the Green’s functions in the 

frequency domain, and allow for computation of the elastic response of multi-layered bodies. 

O’Süllivian and King [13] obtained the FRFs for the contact of bi-layered materials under normal and 

shear loads. The fast Fourier transform (FFT) was first applied to contact mechanics by Ju and Farris 

[14]. The contact of rough surfaces with coatings was modelled by Nogi and Kato [15] with the aid of 

the FFT assisted by the FRFs derived by O’Süllivian and King [13]. Liu and Wang [5] applied FFT 

enhanced techniques in the study of contact stress fields caused by surface tractions, and advanced 

alternate FRFs that are more suitable to numerical implementations. Wang et al. [16] investigated the 

partial slip contact of coated bodies. Recently, Yu et al. [17] obtained the analytical FRFs of multi-

layered materials in a recurrence format and studied the elastic contact of layered bodies with various 

configurations. 

The SAM advanced in [9-11] is extended in this paper to account for the contact of coated bodies. 

The use of state-of-the-art numerical tools based on the fast Fourier transform and the convolution 

theorem allows fine spatial meshes and small loading increments, leading to rapidly converging 

numerical solutions. 

2. The contact model 

The contact problem domain discretization coupled with the superposition of effects in the frame of 

linear elasticity allows for a trial-and-error search of the contact area and of the slip-stick boundary. 

Displacement computation is the essential step in solving efficiently the contact problem. Influence 

coefficients derived from the Green’s functions may be used from homogenous materials, whereas a 

special technique [18] based on the FRFs and the discrete cyclic convolution theorem is needed for 

multi-layered materials. Once the displacement response of the contacting bodies can be expressed for 

arbitrary loading, the iterative search of the contact area and of the slip and stick regions can be 

performed in the frame of the contact model briefly discussed in this section.  

The contact problem is conveniently reported to a Cartesian coordinate systems having its x  and y  

axes contained in the common plane of contact, allowing for the description of initial contact 

geometry ( , )hi x y . The latter axes are referred to as the tangential directions, whereas the z -axis is the 
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normal direction. Forces and moments may be transmitted through the contact: the normal force W , 

the tangential force ( , )x yT TT , the bending (or flexing) moments ,x yM M , and the torsional moment 

zM . As the contacting bodies subjected to load undergo elastic deformation, the initial point of 

contact evolves into a contact region A , on which contact tractions arise to balance the applied load: 

the pressure p  in the normal direction and the shear traction ( , )x yq qq  in the tangential direction. The 

particles of the contacting bodies exhibit elastic displacements
iu , whereas the bodies as a whole move 

as rigid bodies with the translations 
i  and the rotations

i , with , ,i x y z . In the framework of the 

Cattaneo-Mindlin problem [1, 2], although the contacting bodies are globally sticking, slip occurs at 

the periphery of the contact area, to release the otherwise infinite tractions that would result in a fully 

sticking contact. Consequently, the contact area is divided into a stick area S  and a complementary 

slip region A S . The frictional coefficient   is assumed uniform on the contact area and load-

independent. The additional parameter referred to as the relative slip distances ( , )x ys ss  defined in 

[19], allows for the iterative identification of the slip/stick boundary. 

The principles of model discretization are detailed in the companion paper. The SAM assumes 

continuous distributions as piecewise constant over a rectangular mesh P  laying in the common plane 

of contact, enfolding the contact area at any load increment. The elementary cell area is denoted by . 

Discrete model parameters have at most three arguments: the first two are for spatial localization, 

whereas the third one indicates the number of the loading increment, e.g. ( , , )p i j k  is the pressure in 

the elementary cell ( , )i j , attained after k  loading increments. Parameters having two arguments 

depend only on spatial localization, e.g. the mesh nodes coordinates, whereas those with one argument 

depend only on the loading increment, e.g. the rigid-body movements. 

As suggested in previous studies concerning the contact of homogenous materials [9-11], the 

contact model can be divided in two submodels possessing the same structure,: (I) the contact in the 

normal direction described by equations (1), (3) and (5), and (II) the tangential effects governed by 

equations (2), (4) and (6). The solution of each submodel may be consequently achieved with the same 

algorithm. Three types of equations may be identified for each submodel:  

1. The static force and moment equilibrium: 

( , ) ( ) ( , ) ( ) ( , ) ( )

( ) ( , , ); ( ) ( , , ) ( , ); ( ) ( , , ) ( , )x y

i j A k i j A k i j A k

W k p i j k M k p i j k y i j M k p i j k x i j
  

        ; (1) 

 
( , ) ( ) ( , ) ( )

( ) ( , , ), , ; ( ) ( , , ) ( , ) ( , , ) ( , )n n z y x

i j A k i j A k

T k q i j k n x y M k q i j k x i j q i j k y i j
 

         .(2) 

2. The geometrical condition of deformation: 

 ( , , ) ( , ) ( , , ) ( ) ( ) ( , ) ( ) ( , ), ( , )z z x yh i j k hi i j u i j k k k y i j k x i j i j P        ; (3) 

 

 

( , , ) ( , , 1) ( , , ) ( , , 1) ( ) ( 1)

( , , ) ( , , 1) ( , , ) ( , , 1) ( ) ( 1)

( , )
                  ( ) ( 1) , ( , ) ( ).

( , )

x x x x x x

y y y y y y

z z

s i j k s i j k u i j k u i j k k k

s i j k s i j k u i j k u i j k k k

y i j
k k i j A k

x i j

 

 

 

          
       

          

 
   

 

 (4) 

3. The contact complementarity conditions: 

 
( , , ) 0 and ( , , ) 0, ( , ) ( );

( , , ) 0 and ( , , ) 0, ( , ) ( );

p i j k h i j k i j A k

p i j k h i j k i j P A k

  


   
 (5) 
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( , , ) ( , , ) and ( , , ) ( , , 1) 0,( , ) ( );

( , , ) ( , , ) and ( , , ) ( , , 1) 0,( , ) ( ) ( ).

i j k p i j k i j k i j k i j S k

i j k p i j k i j k i j k i j A k S k





     


     

q s s

q s s
 (6) 

The two submodels cannot be solved independently becouse either the normal or the tangential 

displacements comprise contributions from both normal and shear tractions, as shown in the following 

section. A detailed description of the scheme to solve the contact model (1) - (6) can be found 

elsewhere [9-11]. 

3. Computation of elastic displacement in multi-layered materials  

In the framework of the Linear Theory of Elasticity, stresses and displacements arising in a half-space 

due to general loadings are obtained by superposition of solutions of point forces, also referred to as the 

Green's function method. The Green’s function describes the half-space response in the space domain, 

and its counterpart in the frequency domain, is referred to as the FRF. This duality is of particular interest 

in case of coated bodies, where only the FRFs were derived in closed-form [5,13,15]. 

As shown in a previous work by the same authors [18], the FRFs can be used to calculate 

displacement in a coated system with the aid of the discrete convolution theorem [4]. The convolution 

product is computed directly in the frequency domain, where it is converted to an element-wise 

product between the Fourier transforms of the convolution members. Special care must be taken with 

the handling of the periodicity error, i.e. the error associated with the application of the FFT to discrete 

series. The transfer to frequency domain via FFT effectively transforms a non-periodic problem into a 

periodic one, with a period equal to the discretization window. An efficient way for the reduction of 

this error was decribed in [4, 5], and implies an extension of the problem physical domain, resulting in 

an increase of the resolution in the frequency domain. The same method is applied here to derive the 

normal and tangential displacements of the contact surface subjected to contact tractions. The 

displacements required in the contact model (1) - (6) are obtained by inverse FFT (IFFT), as shown in 

the following equation: 

 IFFT

xx xy xzx x

y yx yy yz y

z zx zy zz

f f fu q

u f f f q

u pf f f

     
     

      
            

, (7) 

in which the symbol ( )  denotes the  double Fourier transform with respect to the x  and y -axes, and 

ijf , , , ,i j x y z , is the FRF expressing the displacement in the direction of  i  induced by the contact 

traction acting in the direction of j . The closed-form expressions of the needed FRFs are given 

below, with m  and n  the coordinates in the frequency domain corresponding to x  and y , 

respectively: 

 2

1 1( , ) (1 )(1 4 )zzf m n h R G         ;  (8) 

 (1) (1)

1( , ) 1 ( ) (2 )xzf m n m A A G   ; (9) 

 
(1) (1)

1( , ) 1 ( ) (2 )yzf m n n A A G   ;  (10) 

 
1 (1) (1) (1) (1)

1 1( , ) (2 ) 1 ( ) 4(1 )( )xxf m n G m D D B B       
 

; (11) 

 
1 (1) (1)

1( , ) (2 ) 1( )yxf m n G D D   ; (12) 
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 (1) (1)

1 1( , ) (1 )( )zxf m n C C G    ;  (13) 

 ( , ) ( , )xy yxf m n f m n ;  ( , ) ( , )yy xxf m n f n m ;  ( , ) ( , )zy zxf m n f n m . (14) 

The parameters involved in equations (8) - (10) are fully described in [20], whereas those in 

relations (11) - (13) are given in the companion paper. Once a method for displacement calculation 

considering the contribution of all contact tractions is made available, the solution of the slip-stick 

contact problem can be achieved with the contact model described in the previous section. 

4. Results and discussions 

For validation purposes, the newly proposed computer program is first benchmarked against the 

closed-form solution [19] of the Cattaneo-Mindlin problem for the spherical contact in a fretting loop. 

To this end, the contacting bodies are assumed homogenous and similarly elastic. A steel ball of radius 

18R  mm is first pressed into a half-space with a normal force 
max 1W  kN. A tangential force 

xT , 

oscillating between 
limT  and 

limT , with 
lim max0.9T W , is subsequently applied. This type of loading 

history, depicted in figure 1, is specific to a fretting loop. As the contacting materials are similarly 

elastic, the problems in the normal and in the tangential directions are uncoupled, and the contact 

solution is achieved on a single level of iterations. However, the tangential force needs to be applied 

incrementally, with the reproduction of the states in which the tangential load increment changes sign. 

In figure 2, the frictional coefficient is assumed uniform over the whole contact area, 0.1  , and 

constant during load application to allow comparison with the analytical framework. However, the 

computer program can handle mapped distributions of  . The Hertz frictionless theory for this 

contact scenario predicts a central pressure 3.1684 GPaHp   and a contact radius 0.388 mmHa  , 

which are used as normalizers. The time period of the simulation window is denoted by  (seconds).  

 

 

 

 

Figure 1. The loading history in a 

fretting loop. 

 Figure 2. Contact tractions in a fretting loop. The closed-

form solution [19] is displayed using grey lines. 

 

The slip-stick spherical contact involving a coated material is simulated next by pressing a rigid 

ball into a coated half-space. The Young moduli and the Poisson’s ratio are denoted by 
iE  and 

i , 

respectively, with 1i   for the coating and 2i   for the substrate. A set of contact scenarios is 

simulated by keeping 
2E , 

1  and 
2  constant, whereas 

1E  is varied. The Hertz contact parameters for 

the case when 
1 2E E  are used as normalizers. The frictional coefficient is also fixed at 0.1  , as 
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well as the coating thickness, 
Hh a . The loading program only retains the ascending branch of the 

tangential force depicted in figure 1.  

In this contact scenario, the materials of the contacting bodies are dissimilarly elastic, and 

consequently the contact problems in the normal and in the tangential directions are coupled. 

Moreover, the normal load cannot be applied in one step, as in the case of the frictionless contact 

problem, where the final state depends only on the loading level. The numerical simulations suggest 

that small loading increments (for both normal and tangential forces) are of paramount importance to 

obtain well-converged numerical solutions. The contact tractions profiles in the plane 0y  , for 

different loading levels and 
1 2E E  ratios, are depicted in figures 3 and 4.  

 

 
 

 
 

Figure 3. The influence of the elastic mismatch 
1 2E E  on the pressure profiles in the plane 0y  . 
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Figure 4. The influence of elastic mismatch 
1 2E E  on the shear tractions profiles in the plane 0y  . 

 

For the loading level 
maxW W  and 0xT  , although no tangential force is applied, there exist self-

equilibrating shear tractions due to the mismatch in the tangential displacements between the surface 

particles of the contacting bodies. Further increase of the tangential force past the threshold of 

lim max0.76T W  lead to gross sliding for the case when 
1 2 2E E  , whereas the theoretical model [1, 

2] allows for a limit value 
lim maxT W  before the stick region vanish completely. This discrepancy is 

attributed to the coupling between the normal and the tangential problem, which is not accounted for 

in the analytical framework, and was also observed in other studies concerning the slip-stick contact 

[7, 16]. 

The knowledge of the contact tractions arising in the slip-stick contact further allows the 

computation of the stress state in the coated body, and formulation of design recommendations 

concerning the coated system. 
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5. Conclusions 

The tractions arising in a frictional contact involving a coated material are obtained using a semi-

analytical simulation technique. The elastic response of the coated material is computed based on 

closed-form expressions derived in the frequency domain, also known as the frequency response 

functions. The spectral calculation of the displacement has the additional advantage of increased 

computational efficiency, related to the application of the fast Fourier transform and the discrete 

convolution theorem. 

The contact process is simulated using a numerical scheme based on two levels of iterations. The 

algorithm accounts for the coupling between the normal and the tangential contact problems, and 

therefore is well adapted to the contact of bodies with dissimilarly elastic properties. As the normal 

displacement required for the normal contact solution requires knowledge of the shear stresses, contact 

parameters are obtained in an iterative process that stabilizes the shear tractions with respect to 

pressure.  

The advanced computer program was benchmarked against the solution of the Cattaneo-Mindlin 

problem during a fretting loop. The pressure and shear tractions in the contact between a rigid sphere 

and a coated half-space are obtained for increasing tangential force. The influence of the elastic 

mismatch between the coating and the substrate is investigated numerically. The numerical method 

suggests that the full slip regime is attained at loading levels smaller than the limiting friction force. 

The presented results suggest the method ability to simulate the behavior of the frictional and 

coated contact, thus assisting to the design of improved tribological components for practical 

engineering applications. 
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