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Abstract.The driving wheelset is used on the traction railway vehicle to support a part of the 

vehicle’s weight and for traction and braking purpose. The driving wheelset consists of the axle 

on which the two wheels and the driving gear are rigidly attached. The bending vibrations in 

the driving wheelset may be caused by variations of the vertical wheel/rail contact force. In this 

paper, a mechanical model of the driving wheelset, consisting of a free-free uniform beam with 

three rigid bodies, representing the axle, the two wheels and the driving gear, is considered. 

Using an analytical method for solving the equations of motion for the model, the steady-state 

harmonic behaviour of the bending vibrations is analysed. The frequency response function 

and the impact of the position of the driving gear upon this function are pointed out. 

1. Introduction 

The wheelset is one of the most important machine parts of a rail vehicle, helping to drive the vehicle 

along the track, guiding it and transferring the load forces from the vehicle to the track. 

The wheelset-track vibrations are structural vibrations. However, at low frequencies, the wheels 

and the axle vibrate together as a rigid body for both vertical and lateral wheelset-track vibrations. In 

the domain of medium frequencies, the wheelset vibration is influenced by the axle bending 

vibrations. At high frequencies, above 1500 Hz for radial vibration and 4-500 Hz for axial ones, the 

wheel tread is decoupled by the hub and these modes influences the wheelset vibration [1]. 

Wheelsetsexhibit a broad-spectrum vibration, which is interesting from many technical viewpoints: 

rolling noise [2], wear of the wheel-railcontacts surfaces [3], traction performance [4].  

The following models may be used to study the wheelset vibrations: rigid body models in which 

the wheelset is taken as a simply rigid body [5] or is divided into several rigid parts coupled by elastic 

and damping elements [6]; structural models composed of continuous elastic bodies, with which it can 

obtain a correct representation of wheelset inertia and elasticity distribution [7], and models based on 

the finite element method, allowing for high accuracy in calculating the eigenmodes, especially at high 

frequencies [8, 9]. 

In this paper a model with distributed and concentrated parameters is developed to study the 

bending vibrations of a driving wheelset in the low and medium frequencies range up to 200-300Hz. 

Using the modal analysis method, the basic characteristics of the driving wheelset vibration are 

emphasized.  

2. Mechanical model  

Generally, the axle of the wheelset can be modelled as aEuler-Bernoulli beam or as a Timoshenko 

beam. The advantage of the Euler-Bernoulli beam is the simplicity, while using the Timoshenko beam 

model offers better precision of calculations due to consideration of the effect of the shear force on the 
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rotation of the beam cross-sections as well as the inertial effect of those rotations. The Euler-Bernoulli 

beam model can be applied with good results in situations where the bending wavelength is greater 

than the circumference of the wheelset cross section. 

The mechanical model for studying the bending vibrations of the wheelset (figure 1) consists of 

auniform free-free Euler-Bernoulli beam, which has attached lumped masses representing the two 

wheels and the gear. 

The following assumptions are adopted: the cross sections of the beam are plane and normal to the 

neutral axis, the effect of the shear force and the inertial effect of the rotation of the cross-sections are 

neglected,the gyroscopic effect due the rotation of the driven wheelset is not taken into consideration. 

The beam has the mass per unit length equal to m = ρS where ρ is the density of the material and S 

represents the cross-section area, and the bending stiffness EI in which E is Young’s modulus and I is 

the moment of inertia of the cross-section. The wheels have the lumped mass Mrand the moment of 

inertia Jr, and the wheelset gear has the lumped mass Mc and the moment of inertia Jc. The wheels are 

located at distance a from the wheelset ends and the gear is located at distance c. The distance between 

the wheel’s nominal running circles is 2e. 

Wheelset movement is related to a fixed reference system Oxz. 

 

 

Figure 1. The mechanical model of a driving wheelset. 

 

The vertical forcesQ1(t)andQ2(t)depending on the time tact on the two wheels. These forces act in 

the same or opposite directions. The justification for this assumption is related to the fact that any 

excitation Q1, Q2 can be decomposed into a symmetrical excitation and an antisymmetric excitation  
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where  1 1 2 / 2Q Q Q   is the magnitude of the symmetrical excitation and  2 1 2 / 2Q Q Q   is the 

magnitude of the antisymmetric excitation. 

The equation (2) of motion for the driving wheelset is: 
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where is the Dirac functionandxrepresents the space coordinate along the axle. 

Applying the modal analysis method, the vertical displacement of the wheelset transverse sections 

shall be considered as equation (3): 
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wherew0(t) represents the time coordinate for the first rigid vibration mode (vertical translation), 

θ0(t)represents the time coordinate of the second rigid vibration mode (vertical rotation with respect to 

the centre of the beam) with its eigen functionx-l/2, and Xn(x)Tn(t) are the elastic vibration modes with 

the time coordinate Tn(t)and the eigen function given by equation (4): 
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where n results from characteristic equation. 

The frequency response of the driving wheelset is based on the modal analysis method applied to 

equation (2), in which the two rigid vibration modes and the first two elastic vibration modes are 

considered. 

 The equations of motion for a vibration mode is obtained by multiplying the equation (2) by its 

eigen function, followed by integration in the [0, l] domain. Applying the orthogonality property of the 

eigen modes, the following equations of motion are obtained, equations (5) - (8): 
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where ( / 2 ),e l a  ( / 2),p c l  m2,3are the modal masses, k2,3are the modal stiffness, with
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Considering the steady state harmonic behaviour, the time functions and the external forces have 

the bellow forms, equation (9): 
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where W0, Θ0, T2,3 and Q1,2are the amplitudes, and ω is the angular frequency. 

The frequency response is determined by solving a system formed with the following equations, 

(equations (10) – (13)): 
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For symmetric excitation, the amplitudes of the external forces are Q1=Q2=Q, and for 

antisymmetric excitation, the external forces amplitudes will be Q1=-Q2=Q. 

3. Numerical application 

In this section, the model and method above presented are used to analyse the harmonic steady-state 

behaviour of a wheelset. The parameters for the model are as follows: axle length l = 2.11 m, axle 

diameter d = 0.1991 m, Young’s modulus E = 210 GPa, the density of the material is ρ = 7850 kg/m2, 

the wheel mass is Mr= 500 kg, the moment of inertia of the wheel is Jr= 48.82 kgm2, the mass of the 

crown is Mc = 350 kg, the moment of inertia of the toothed crown is Jc = 17 kgm2, the distance 

between the axle and wheel end is a = 0.305 m and the distance between the axle end and the toothed 

crown is c = 0.52 m. The parameters values correspond to a driving wheelset equipping the 060EA 

electric locomotive of the Romanian Railway. The frequency range considered is between 10 and 300 

Hz. 

At first, the case of the wheelset without gear is analysed as a geometric and inertial symmetrical 

structure. Figure 2 shows the calculated receptance at the first wheel of rigid vibration mode and the 

first elastic vibration mode when the wheelset is symmetrically excited. It can be seen that on the 

frequency range considered, the rigid vibration mode is predominant. The resonance frequency is 95.5 

Hz. The receptance of the elastic vibration mode is similar to a system with a single degree. The two 

symmetrical vibration modes are shown in figure 3. The resonance frequency is preceded by an 

antiresonance frequency at 94 Hz. In this case, the receptances are equal for the two wheels. 

If the wheelset is antisymmetric excited, then its response is made up by the rigid antisymmetric 

(rotation) mode and the first antisymmetric elastic mode. The receptances of these two vibration 

modes calculated at the first wheel are shown in figure 4 and the total receptance in figure 5. The 
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second rigid vibration mode is predominant over the elastic mode of antisymmetric vibration over the 

entire range of frequencies considered. The antisymmetric wheelset vibration receptance has an 

antiresonance with frequency of 192.5 Hz, followed by a resonance at approximately 205 Hz. The 

receptances are equal and opposite for the two wheels. This is similar to a mechanical system 

equivalent to two degrees of freedom, elastically coupled, one of which has rigid movement. 

 

  

Figure 2. Symmetric eigenmodes. Figure 3. Wheelset receptance for symmetric 

excitation. 

  

Figure 4. Antisymmetric eigenmodes. Figure 5. Wheelset receptance for antisymmetric 

excitation. 

  

The presence of wheelset gear leads to the coupling of symmetrical vibrations with the 

antisymmetric vibrations due to the asymmetry of the structure (figures 6 and 7). In addition, the 

resonance frequencies decrease due to inertial effect. These frequencies are at approx. 90 Hz and 191 

Hz, respectively. In the case of symmetrical excitation (figure 6), the resonance frequencies are located 

between the two antiresonance frequencies (85.3 Hz and 193.2 Hz respectively). For antisymmetric 

wheelset excitation, the resonance frequencies are preceded by an antiresonance frequency at 89 Hz 

and 187 Hz respectively (figure 7).  
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Figure 6. The receptance of the driving wheelset with symmetrical excitation. 

 

Figure 7. The receptance of the driving wheelset with antisymmetric excitation. 

 

 Also, figures 6 and 7 show the receptances calculated against the two wheels when the wheelset is 

both symmetrically and antisymmetric excited. The lower value of the receptance against the left 

wheel is explained by the presence of the gear near it. Due to the higher mass on the left side of the 

wheelset, the inertia increases, and the vertical movement has a lower value.  

  

  

Figure 8. The receptance of the driving wheelset 

with different position of the gear for symmetrical 

excitation. 

Figure 9. The receptance of the driving wheelset 

with different position of the gear for 

antisymmetric excitation. 
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 Figure 8 shows the receptance of the driving wheelset when the gear is placed at the centre of it, 

compared to the de facto situation. It can be seen that the first resonance and antiresonance frequencies 

decrease, their value being 83 Hz and 76.6 Hz. Also, due to the decoupling of the two types of 

vibration, the symmetrical excitation only excites the symmetrically vibration mode. The receptance 

for the first wheel has a higher value due to the balanced distribution of the inertia force along the 

wheelset compared to the wheelset whose gear is near the wheel, resulting a greater inertia near the 

wheel. In the case of antisymmetric excitation (figure 9), only the antisymmetric vibration mode is 

excited, the resonance frequency being equal to the resonance frequency of the driving wheelset with 

the gear located near the wheel.  

4. Conclusions 

In this paper a model with distributed and concentrated parameters has been developed to study the 

bending vibrations of a driving wheelset for low and medium frequencies. The basic characteristics of 

bending vibrations have been highlighted by applying the modal analysis method. The model 

presented will after being embedded in a comprehensive model for studying of driving wheelset-track 

vibrations. 

 The first four vibration modes were considered in order to study the influence of wheelset gear on 

the vibration of the driving wheelset. The presence of the gear results in the reduction of the natural 

frequencies. Thus, the frequency of the first vibration mode decreases from 95.5 Hz to 90 Hz and the 

frequency of the second vibration mode decreases from 192.5 Hz to 191 Hz. At the same time, the 

coupling of the symmetrical modes with the antisymmetric ones takes place, which leads to different 

receptance on the two wheels, aspect which is likely to favour the occurrence of the torsional 

vibrations of the driven wheelset.  

 When the gear is located at the centre of the wheelset, thesymmetrical vibration modes are 

decoupled from the antisymmetric ones. 
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