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Abstract. Many engineering structures such as beams, shafts or thin-walled tubular rods are 

subject to twisting stress. Torsion of cylindrical and prismatic rods of various cross-section is 

of great practical utility and technical importance in engineering, structural design and 

mechanical work.  Machine construction, steel bridges, ship buildings and brake systems are 

just some of the main areas of application. Calculation of the shear stress distribution due to a 

torsional moment is a complicated problem. Although several solutions have been formulated 

over time, only a few have analytical forms. In many situations the torsion problem was solved 

numerically using 2-dimensional Finite Element method. In the present paper, equations for the 

stress function and the torsional moment (Prantl’s formula) are established for the considered 

geometry. 

1. Introduction 

In order to solve a twisting problem in a general case, a semi-inverse method is used, partially 

proposing the displacements in the rod and determining the rest of the solution from the condition of 

satisfying the linear elasticity fundamental equations: Cauchy equations, the integral relations between 

stresses and sectional stresses and contour conditions [1-6]. 

Several methods of solving based on this principle have been developed over time, namely [1-4]: 

Saint Vénant's twist function, Prandtl's stress-function method, complex potency function method, or 

methods based on various analogues (with membrane, fluid-dynamics, hydrodynamics, 

electrodynamics and optics). Of these, the simplest and most intuitive method is Prandtl's tension 

function. As a result, this is the method used in this paper. 

2. Proposal for a solution in displacements 

For the present study, a rod segment is considered with multiple linked cross section submitted to a 

torque tM , as illustrated in figure 1. The cross section’souter perimeter is bound by the contour (
0C ), 

and inside there are several contours (
iC ) where 1i n . According to the current solving procedure, 

[3], in mathematics, the outer contour is followed in trigonometric sense, while the inner ones in a 

clockwise direction. 
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Figure 1. Twisting of a rod with multiple linked cross section. 

 

The area of the surface enclosed by the outer contour (
0C ) is marked with

0A , and the areas 

enclosed by the inner contours (
iC ) with

iA . As a result, the cross-sectional area is, equations (1): 

 

 
0

1

n

i

i

A A A


 
 

(1) 

 

The applied torque causes elastic twists of the cross-sections with values increasing from 0 in the 

origin to  at the free end, [3]. If ( x ) is considered to be the twisting of the current cross-section of x 

abscissa,in the infinitely adjacent section, x dx , the twisting becomes  
( x )

( x ) dx
x








. The 

relative twist of the two adjacent cross-sections that define a rod segment of dx length is, equations 

(2): 

 
  ( x ) ( x ) dx ( x ) dx

x x

 
  

 
   

   
(2) 

The ratio: 

 

 

( x ) d
( x )

dx x dx

  



  
  

(3)
 

 

is the specific twist in section x. In equation (3), the partial derivative / x   was replaced by the 

total derivative because   only depends on x. 

The rod is considered homogeneous over its length and the specific twist  is constant. Therefore, 

equation (3) takes the following form: 

 

  d dx   
(4) 

 

Equation (4) is a differential equation with separate variables, having the solution: 

   

 1( x ) x c     
(5) 

 

where 
1c is an integration constant determined by the condition that in absence of twist, i.e. 0  , the 

free end does not rotate, respectively 0  . From this condition it follows that 
1 0c  and thus the 

twisting of the x-section, ( x ) , given by equation (5) becomes: 

 

 ( x ) x    
(6) 
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Equation (6) shows that the twist is proportional to the abscissa, so that twisting of the free end is: 

 ( )      
(7) 

 

By analogy to the rotation motion, twisting can be viewed as a vector directed along the axis of the rod: 

 

    ( x ) ( x ) i x i     
(8) 

 

By rotation of the x-section with an angle equal to ( x ) , an initial point M( x,y,z )  belonging to 

said section will be displaced by  in the x-plane, given by the vector product: 

 

 ( x ) r    
(9) 

 

where    r x i y j z k    is the position radius of this point. The displacement  is written: 

 

 

 0 0       

i j k

x x z j x y k

x y z

      

  

(10) 

 

On the other hand, the displacement vector at the point M has the expression, u, v and w being 

axial displacements. Therefore, the component   can be written as: 

 

   v j w k    (11) 

 

By identifying equations (10) and (11), the following expressions of the displacements along the y 

and z axes are obtained: 

 

   v x z ;   w x y
 

(12) 

  

According to Saint Vénant's hypothesis, the u displacement does not depend on x. Therefore, the 

transverse cross sections have to deform the same. Instead, this displacement may depend on y and z. 

When the rod is not loaded ( 0  ), there are no deformations, and the displacement u can be written: 

 

 u ( y,z )    
(13) 

 

where ( y,z )  is called Saint Vénant's torsion function. It can be seen that the displacementu depends 

only on the coordinates y and z, being independent of x. Therefore, the displacement 
0u  of the points 

on the rod axis is constant. As noted above, the center of the left end of the rod, of coordinates 0x  , 

0y  , 0z   remains fixed after the rod is deformed. As a result, the displacement 
0u  is null, 

0 0u  , 

i.e. the rod axis points do not move along the axis direction after applying the twisting moment. 

Finally, the displacement vector components are: 

 

 u ( y,z )   ;      v x z ;      w x y
 

(14) 

 

The unknown function ( y,z )  is to be determined from the condition of satisfying the 

fundamental equations of elasticity, [1-4]. 
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The partial derivatives of the displacements,  v/ yu / x,     and w / z  , are null. Therefore, the 

divergence of the displacement vector U  and implicitly the specific volume strain
v , have null values: 

 

 
0v

u v w
divU

x y z


  
    
    

(15) 

 

which shows that torsion occurs without volume variation. From equation (15), immediately follows 

that u, v and w displacements given by equations (14) meet the particularities of the Lamé’s equation 

in the case of null mass forces: 

 

 
0

u v w
divU

x y z

   
      

     
(16) 

 0U   (17) 

 

In equation (16), the order of the “Laplace” and “Divergence” differential operators is reversed, 

resulting in: 

 

  0div U   (18) 

or: 

    0U u i v j w k       (19) 

 

The displacements along the axes v and w, expressed by equation (14) lead to the conclusion that 

0v   and 0w  . Equation (19) is only met if, 0u   respectively, if: 

 

 

2 2

2 2
0

y z

  
 

   
(20) 

 

This equation shows that Saint Vénant's torsion function is a harmonic function over the cross 

section of the rod. 

3. Components of the stress tensor 

Knowing the displacements u, v, w, the specific strains in the rod are calculated by the differential 

relations between specific displacements and strains: 
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

;    
 

0
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y

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
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0
 

z

w

z



 


;     
   

   
xy

v u
z

x y y


 

   
    
   

; 

  
  0

  
yz

w v
x x

y z
  

 
    
 

;    
   

   
zx

u w
y

z x z


 

   
    
   

. 

(21) 

 

Stress tensor components are obtained by substitution of specific strain in Hooke's generalized law: 
 

 0
1 1 2

x x v

E 
  

 

 
   

  
;     0

1 1 2
y y v

E 
  

 

 
   

  
; (22) 
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1 1 2

z z v

E 
  

 

 
   

  
;      

 

 
xy xyG G z

y


  

 
   

 
;  

 0yz yzG   ; 
 

 
 

xz xzG G y
z


  

 
   

 
. 

Equations (22) show that the only non-null stresses are the orthogonal and tangential tensile 

stresses xy  and 
xz . On the cross-section, these are the components of the stress vector, which in this 

case is a tangential stress vector  : 
 

  xy xzi k    .  (23) 

4. Prandtl's stress function 

In elasticity, the notion of stress function is frequently used, [1-6]. Generally, this is a coordinate 

function, whose partial derivatives are proportional to the components of the stress tensor. For 

twisting, the stress function is denoted by ( y,z ) , and its partial derivatives over the cross section 

provide the orthogonal tangent stresses through the following relations, [3]: 
 

xy G
z

 





; 
xz G

y
 


 


. (24) 

 

The function ( y,z )  is called the Prandtl’s stress function. Its use is more convenient than Saint 

Vénant's torsion function. The two functions, ( y,z )  and ( y,z ) , are not independent. The link 

between them is obtained by identifying equations (22) and (24) of tangent stresses xy  and 
xz : 

 

z
z y

 
 

 
; (25) 

y
y z

 
  

 
. (26) 

 

By derivation of equation (25) in relation to z, and equation (26) in relation to y and adding the 

results we obtain: 
 

2   .  (27) 

 

Prandtl's stress function is no longer harmonic, as Saint Vénant's torsion function, but is bi-

harmonic and satisfies the differential equation (27)with Poisson-type partial derivatives. 

5. Determination of unspecified elements of the solution 

In the above presented work, a partial solution to the problem has been proposed, in which 

displacements and stresses are expressed either by Saint Vénant's harmonic function or by Prandtl's bi-

harmonic one. None of the two functions involved,   or , is not specified as a concrete form, [3]. In 

order to specify the form of these functions, it is necessary to satisfy the fundamental equations of 

elasticity, namely Cauchy’s equations of equilibrium, the contour conditions of the problem and the 

integral equations between the stresses and the sectional stresses on the cross section of the rod, [1-4]. 
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5.1. Meeting Cauchy’s equations 

The substitution of equations (24) in Cauchy equations for the translational equilibrium of the volume 

element leads to: 
 

2 2

0 0
xyx xz G G

x y z y z y z

 
 

     
     

      
; 

0 0 0 0
xy y yz

x y z

    
     

  
;    0 0 0 0

zyxz z

x y z

  
     

  
. 

(28) 

 

It can be noticed that the proposed solution satisfies Cauchy’s equations regardless of the actual 

form of the function. 

5.2. Meeting the contour conditions 

The contour of the rodis limited by the lateral and front surfaces. According to Saint Vénant's 

hypothesis, away from the front surfaces, stress and strain states do not depend on the actual mode of 

loading, but only on the resultant load value, [1-4]. Therefore, loading is considered to be distributed 

on the front surfaces as tractions that automatically satisfy the corresponding contour conditions, e.g., 

tractions identical to the twisting stresses of the current cross-section, [3]. 

Since external forces are not applied to the lateral surface, and the normal are perpendicular to the 

x-axis, that is their directional dimension relative to the x-axis is null, 0 , at the points of the 

contour of any cross-section the relations are valid: 
 

0yx zxm n   ;  0y zym n   ;     0yz zm n   , (29) 

 

where m and n are non-normal non-linear directing parameters satisfying the condition 2 2 1m n  . 

The last two equations are identically satisfied because the stresses involved are null and the first 

equation becomes: 
 

0m n
z y

 
 

 
. (30) 

 

According to figure 2, on the contour of the cross-section the normal’s directing parameters of the 

normal are expressed according to the arc element by the relations: 
 

dz
m cos

ds
  ; 

dy
n sin

ds
   , (31) 

 

where the minus sign in the expression of n takes into account that dz and ds increase in trigonometric 

sense, while dy decreases along the same direction. 

By substituting equation (31) into equation (30), it results that over the contour of the cross-section, 

the following condition is satisfied: 
 

0dy dz
y z

 
 

 
. (32) 
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Figure 2. Contour conditions. 

 

The left member of equation (32) represents the total differential d  of ( y,z )  function, so that 

this equation becomes: 
 

0d .  (33) 

 

Equation (33) shows that, on any contour of the rod, the differential of ( y,z ) is null, i.e. this 

function has a constant value. According to equations (24), the stress state components depend only on 

the derivatives of ( y,z ) . Consequently, the constant can be arbitrarily chosen for any one contour of 

the rod, preferably the outer one. It is therefore convenient to consider that this function ( y,z )  has a 

null value over this contour. Over the inner contours 
i(C ) , the stress function ( y,z )  takes constant 

values, denoted by 
ik . Consequently, the contour conditions of the problem are fulfilled if the next 

relationships are true: 
 

0
0( C )  ;

i( C ) ik  .  (34) 

5.3. Meeting of the integral relationships between stresses and sectional efforts 

Since the only non-null sectional effort is the torque
tM , the integral relationships between stresses 

and sectional efforts take the form: 
 

 0x

A

dA N   ;  0xy y

A

dA T   ;  0xz z

A

dA T   ; 

  0x z

A

y dA M   ;    0x y

A

z dA M   ;    xz xy t

A

( y z ) dA M   . 
(35) 

 

The relations of the sectional efforts, N, yM  and 
zM  are satisfied in the same way, as 0x  . It 

remains to check the relationships for cutting forces yT  and 
zT  that of the twisting moment 

tM . 

5.3.1. Cutting forces 

By substituting in the relations of forces yT  and 
zT stresses xy  and 

xz by their expressions from 

equations(24), it follows that: 
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 0
A

dydz
z




 ;  0
A

dydz
y





. (36) 

 

Taking into account equation (1), equations(36) become: 
 

0
1

  0
n

i

iA Ai

dydz k dydz
z z

 
 

 
  ;      

0
1

  0
n

i

iA Ai

dydz k dydz
y y

 
 

 
  . (37) 

 

The double integrals from equations(37) are transformed into the curvilinear integrals over the 

contours of the cross-sections using Green’s formula. In a general case of two functions,  f f y,z

and  h h y,z , Green’s formula has the following form: 
 

 
A ( C )

f h
dydz fdz hdy

y z

  
   

  
  . 

(38) 

 

where (C) is the contour of domain A. 

Applying this formula to equations (37), it produces: 
 

0
1

  0

i

n

i( C ) ( C )

dy dy


      ;      

0
1

  0

i

n

i( C ) ( C )

dz dz


     . (39) 

 

On the outer contour (
0C ), the function  is null, while over the inner contours, its values are 

denoted by
ik . As a result, equations (39) become: 

 

1

0

i

n

i

i ( C )

k dy


  ; 
1

0

i

n

i

i ( C )

k dz


  . (40) 

 

According to known mathematical properties, the curvilinear integrals on the closed contours (
iC ), 

which intervene in equations (40) are null, so that these equations are equally satisfied. It follows that 

the proposed solution satisfies the integral relationships of the cutting forces yT  and 
zT . 

5.3.2. Twisting moment (Prandtl's formula) 

By substituting tangent stress equations (24) in the integral twist moment from equations (35), the 

following expression is obtained: 
 

 t

A

M G y z dydz
y z


  

   
  

 . (41) 

 

By writing the integrand from equation (41) as: 
 

    2y z y z
y z y z

   
      

   
, (42) 

 

equation (41) becomes: 
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     2t

A A

M G y z dydz G ( y,z )dydz
y z

 
  

       
  

  . (43) 

 

Taking into account equation (1) of the area A on which the first integral of equation(43) is 

defined, it follows that: 

0

1

 

          2    .

i

t

A

n

i A A

M G ( y ) ( y ) dydz
y y

G ( y ) ( y ) dydz G ( y,z ) dydz
y y



 


  
      

  

  
      

  



 

 (44) 

 

As in the case of cutting forces, the double integrals of the first two terms of the right-hand side of 

equation (44) are transformed into curvilinear integrals on the contours of the sections, using Green’s 

formula: 

   
0

1

 

           2

i

n

t

i( C ) ( C )

A

M G z dy y dz G z dy y dz

G ( y,z )dydz.

 





          

 

 


 (45) 

 

Because the function   is null on the contour (
0C ) and takes the values 

ik on the inner contours (

iC ), equation (45) becomes: 
 

 
1

2

i

n

t i

i C A

M G k zdy ydz G ( y,z )dydz. 


        (46) 

 

The curvilinear integral over one of the inner contours (
iC ) is twice the area 

iA  enclosed by said 

contour: 

   2

i

i

( C )

y dz z dy A  . (47) 

 

Therefore, equation (46) yields the following simple final form: 
 

1

2 2  
n

t i i

i A

M G k A G ( y,z ) dydz. 


     (48) 

 

Equation (48) is called Prandtl's formula for multiple linked domains, and must be satisfied for any 

straight rod subjected to twisting. 

In the case of simply linked sections, Prandtl's formula becomes: 
 

 
(49) 

6. Method of solving twisting problems 

In a twisting problem, the length of the rod , the contours of the cross-section (
0C ) and (

iC ), the material 

and its elastic properties E, G, and  , as well as the applied torque 
tM , are usually given. It is required to 

determine the stress and strain states of the rod in order to impose rigidity and strength conditions. In 

essence, the stress function ( y,z )  is determined so that it meets the following conditions: 

- 
0

0( C )  ; 
i( C ) ik  ; 

2  t

A

M G ( y,z ) dydz. 
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- 2   ; 

- 
1

2 2
n

t i i

i A

M G k A G ( y,z )dydz 


    or 2t

A

M G ( y,z )dydz.   

Of the several methods developed for solving, it is preferable to construct this function by using the 

cross section contour equation. 

The following steps are taken in order to solve the problem: 

1. Determination of the stress function ( y,z ) : 

a. The following form of the stress function is proposed: 
 

0 ( y,z ) k C ( y,z )  , (50) 

where: 

 0 0 0C C ( y,z )   (51) 

is the equation of the outer contour of the rod, and k is a constant to be determined. This form 

automatically ensures that the stress function is canceled on the outer contour of the rod, 

0
0( C )  . 

b. Determine the constant k from the 2   condition. 

c. Determine the values 
ik  that the stress function takes on the inner contours (

iC ) of the rod. If there 

is only one inner contour, 1i  , concentric and similar to the outer contour, the value is obtained by 

substituting the curve (
1C ) coordinates in the stress function. If there is only one outline, eccentric to 

the outside, or there are several inner contours, the values of the constants 
ik  are determined by the 

theorem of the movement of the tangential stresses applied to these contours. 

2. Determination of the specific twist and rigidity check of the rod: 

Calculating the specific twist using Prandtl's formula as: 
 

, 

(52) 

 

for multiple linked domains, or: 
 

2

t

A

M

G ( y,z )dydz
 


, 

(53) 

 

for simply related domains. Equations(52) and (53) can be written in the following simple form: 
 

t

t

M

GI
  , (54) 

where 
tI  is the conventional twisting moment of inertia of the rod. It has one of the following expressions: 

 

1

2
n

t i i

i A

I k A ( y,z )dydz


 
   

 
  , (55) 

 

for multiple related domains, or: 
 

1

2

t

n

i i

i A

M

G k A ( y,z )dydz






 

  
 
 
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2t

A

I ( y,z )dydz  , (56) 

 

for simply related domains. 

3. Determining the stress state and checking the rod’s strength 

The components of the stress vector are determined by replacing the specific twist given by 

equation (54) in equation (24): 
 

t
xy

t

M
G

z I z
 

 
 

 
;  t

xz

t

M
G

y I y
 

 
   

 
. (57) 

 

4. Determination of u( y,z ) displacement over the cross-section 

The displacement u( y,z )  is proportional to Saint Vénant's twisting function, according to 

equation(13). The partial derivatives of ( y,z )  are determined by the derivatives of ( y,z )  by means 

of equations (25) and (26). These are then integrated, the contour conditions are imposed over the 

contour of the rod and on the twisting axis in order to identify the solution and find the ( y,z )  function. 

7. Conclusions 

The work presented herein describes the resolution of a torsion problem using a semi-inverse method. 

Rod displacements were partially proposed, while the remainder of the solution was determined by 

imposing it to meet the fundamental conditions of linear elasticity. 

The particular interest of the studied problem is given by the considered straight rod’scross section 

shape, which is a multiple connected domain. 

By particularization of the cross section and considering it filled and bound by a closed conical 

curve (ellipse/circle), the presented method yields known calculus relations for torsion, which 

validates the obtained equations. 
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