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Abstract. Torsion of bars of various cross-section is of great practical utility in engineering, 

structural design and mechanical work. It is applied in machine construction, steel bridge or 

railway construction. Many publications can be found in literature that present the stress-strain 

analysis in the case of straight rods with constant profiles subjected to torsion. Most of these 

works were however directed to the case of rods with simple connected domains as cross 

sections. The present work uses a semi-inverse method which permits to determine general 

equations for stress-strain analysis in the case of rods having a multiple connected domain as 

cross section, subjected to torsion. For the present study, the general equations were 

customized for two particular cases that of an elliptical cross section and that of an elliptical 

ring.The determined analytical equations were implemented to a specific situation by aid of 

Mathcad software.  This permitted to graphically represent the distribution of torsion stresses 

and cross-section deflection. 

1. Introduction 

Many publications can be found in literature, [1-3], that present the stress-strain analysis in the case of 

straight rods with constant profiles subjected to torsion. Most of these works were however directed to 

the case of rods with simple connected domains as cross sections.  

Based on previous research by the authors, [4-6] the present study uses a semi-inverse method 

which permits to determine general equations for stress-strain analysis in the case of rods having a 

multiple connected domain as cross section, subjected to torsion. For the present study, the general 

equations were customized for two particular cases that of an elliptical cross section and that of an 

elliptical ring. 

2. Torsion of rods with elliptic cross section  

2.1. Stress function 

A straight rod with filled elliptical cross section with the a and b half-axes is considered, as illustrated 

in figure 1. 
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Figure 1. Rod with elliptical cross-section. 

 

The equation of the corresponding limit ellipse, given by: 
 

 

2 2

2 2
1 0

y z

a b
  

 
(1) 

 

allows to write the following outer contour equation (
0C ): 

 

 
2 2 2 2 2 2

0 0(C ) a b a z b y     (2) 

 

In accordance with the general expression of the stress function, [4]: 
 

 0 ( y,z ) k C ( y,z )   
(3) 

 

the stress function corresponding to an elliptical cross section is written as: 
 

 
 2 2 2 2 2 2( y,z ) k a b a z b y   

 
(4) 

 

Where k is determined by the condition 2   . By computing the Laplace operator for the 
function, it follows that: 
 

 
 2 22 2k a b     

 
(5) 

 

leading to: 
 

 
2 2

1
k

a b


  
(6) 

 

The final expression of the stress function is: 
 

 
 2 2 2 2 2 2

2 2

1
( y,z ) a b a z b y

a b
   

  
(7) 

 

At the center of the ellipse, the stress function gets the value 
2 2 2 2

0 a b / ( a b )   . A constant 

value of the function  , be it
00( , )  , converts equation (7) to: 
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2 2

2 2

0

1
y z

a b


  

  
(8) 

 

Equation (8) represents the stress lines equation. These are coaxial and concentric ellipses with the 

contour ellipse of the section (
0C ). 

2.2. Specific twist 

As the considered cross-section is simply related, Prandtl's formula for a multiple connected domain: 

 

2  t

A

M G ( y,z ) dydz, 
 

(9) 

becomes, [4]: 
 

 
 2 2 2 2 2 2

2 2

2
 t

A

G
M a b a z b y dydz,

a b


  

 
 

(10) 

 

where G represents the transverse elasticity modulus and   is the specific twist. 

To solve the above shown double integral, the following substitutions are made: 
 

  cosy a  ;      sinz b  ,    0  1[ , ] ,    0  2[ , ]   
(11) 

 

The dydz area element is in this case: 

 

 

y z

dydz d d ab d d
y z

 
    

 

  
  
  
  

      

(12) 

 

By operating the change of variables in equation (10), it results that: 
 

 

2 13 3 3 3
2

2 2 2 2

0 0

2   
1t

G a b G a b
M d ( )d

a b a b


  

     
  

 
(13) 

 

Equation (13) leads to the specific twist as: 
 

 

2 2

3 3 

tM ( a b )

Ga b







 
(14) 

 

Equation (14), of the specific twist is usually written under the following simple form: 
 

 

t

t

M

GI
 

 
(15) 

 

where the conventional moment of inertia for twisting of elliptical section rods is obtained by 

identifying equations (14) and (15): 
 

 

3 3

2 2

 
t

a b
I

a b




  
(16) 
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2.3. Stress state 

The components xy  and 
xz  of the stress vector  expressed by the partial derivatives of the stress 

function , according to the relations: 
 

 
xy G

z
 





;    xz G

y
 


 


 

(17) 

 

which become: 
 

 

2

2 2

2
xy

a z
G

a b
  


;    

2

2 2

2
xz

b y
G

a b
 

  
(18) 

 

The product G  is deduced from equation (15), thus equations (18) become: 
 

 

2

2 2 3

22

 

t t
xy

t

M M za z

a b I ab



   


;    

2

2 2 3

22

 

t t
xz

t

M M yb y

a b I a b



 


 

(19) 

 

The magnitude  of the stress vector takes the form: 
 

 

2 2
2 2

4 4

2

 

t
xy xz

M y z
( y,z )

ab a b
  


   

 
(20) 

 

On the ellipse axes, the component parallel to the axis is canceled so that the stress vector is 

perpendicular to the axes and varies linearly along them: 
 

 
3

2
0

 

tM y
( y, )

a b



 ;      

3

2
0

 

tM z
( ,z )

ab





 
(21) 

 

On any given diameter with a slope m or z my , respectively, the stress vector has the size: 
 

 

2

4 4

2 1

 

tM y m
( y,z )

ab a b



 

 
(22) 

 

This vector is no longer perpendicular to the diameter but inclined towards it, so that it is tangent to the 

stress lines, including contour. Stresses variations along the ellipse axes and any diameter are illustrated in 

figure 2. 
 

y

z
max

tM


O

 

Figure 2. Variation of tangential stresses on the elliptical section. 
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Figure 3(a) shows the three-dimensional distribution of the stress vector value, and figure 3(b) 

illustrates this distribution through stress lines. The stresses are made dimensionless by division to the 

maximum stress 
max  and the lengths by reference to the ellipse's largehalf-axis, a . 

 

y z ( )

 y z  

 

(a) Three-dimensional representation of 

dimensionless stress. 
(b) Constant stress level lines. 

Figure 3. Distribution of non-dimensional tangent twisting stresses over the elliptical section. 

 

By analysis of the variation of tangent stress  , it was found that, according to the general theory 

of twisting, tangent stress is canceled at the center of gravity of the section, reaches a maximum value 

max , at the ends of the small axis and has a minimum contour value
min , at the ends of the large axis. 

The values of the extreme stresses are: 
 

 
2

2

 

t
max

M

ab



 ;      

2

2

 

t
min

M

a b





 
(23) 

 

The maximum value above is also the maximum value on the section. 

2.4. Axial displacement over the cross section 

In accordance to the general methods and equation (7), the partial derivatives of the twisting function are 

given by: 
 

 

2 2

2 2

b a
z z

y z b a

  
   

  
; 

(24)

 

 

2 2

2 2

b a
y y

z y b a

  
    

  
 

 

By integrating the two obtained equations (24), it results that: 
 

 

2 2

2 2

b a
( y,z ) yz F( z )

b a



  


;  

2 2

2 2

b a
( y,z ) yz H( y )

b a



  

  
(25) 

 

where F( z )  and H( y )  are functions that fulfill the role of integration constants. The two equations 

(25) of the function   must be identical. This is only possible if the functions F( z )  and H( y )  are 

reduced to the same constant:  H(y) CF( z )  . As a result, the twisting function becomes: 
 

 

2 2

2 2

b a
( y,z ) yz C

b a



  

  
(26) 
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z


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z
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The displacement u( y,z )  takes the following form: 
 

 

2 2

2 2
   

b a
u( y,z ) yz C

b a
 

 
  

   
(27) 

 

Because 
00 0 0u( , ) u   the integration constant is null, 0C  . Final expression of axial 

displacement is therefore: 
 

 

2 2

2 2
  

b a
u( y,z ) yz

b a


 
  

   
(28) 

 

Equation (28) shows that the initially flat sections of the rod no longer remain flat after loading, but 

become hyperbolic paraboloids, as illustrated in figure 4(a) in three-dimensional view and in figure 

4(b) through constant level lines. Level curves belong to a family of equilateral hyperboles. The points 

on the y and z axes have zero displacements and remain in their initial positions, as well as those 

located on the rod axis. The twisting center coincides with the center of gravity. 

y z u( )

 

a. Three-dimensional representation. 
 

y z u( )

 
b. Constant strain level curves. 

Figure 4. Strain of elliptical cross-section after twisting. 
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3. Torsion of rods with elliptical ring cross section 

A straight rod is considered with an elliptical ring cross section, bound by the following two ellipses, 

having a common axis and the same aspect ratio: 

 

 

2 2

2 2
1 0

y z

a b
   ;    

2 2
2

2 2
0

y z

a b
  

 
(29) 

 

where 0 1  .  The first of the two equations (29) describes the outer elliptic boundary, of a and b 

half-axes, while the second equation describes the inner boundary, of half-axes a  and b  , smaller 

than a, b.  The obtained cross section in illustrated by figure 5. 

 

y

z

a

b

tM

a

b

 

Figure 5. Elliptic ring cross section. 

 

The length of the rod, , applied torque
tM , as well as material elastic properties are considered 

known.  The problem is to determine the rod’s strain and stress states. This situation is that of a double 

connected domain as cross section. 

3.1. Stress function 

As the stress function annuls over the outer contour, the solution already obtained in the case of a 

filled elliptic cross section, given by equation (7) was proposed directly. 

However, because in the present case the cross section is double connected, it must be verified that 

the stress function is also constant over the inner contour, 
1(C ) . For this aim, the ( y,z )  stress can 

be rewritten as: 

 

 

2 2 2 2

2 2 2 2
1

a b y z
( y,z )

a b a b

 
    

    

(30) 

 

The second of equations (29) and equation (30), lead to the following value of the stress function 

 over the inner contour, which represents the 
1k constant: 

 

 
 

1

2 2
2

12 2
1( C )

a b
k

a b
   

  
(31) 

3.2. Specific twist 

In the case of the considered double connected domain, Prandtl’s formula can be obtained by 

particularization of the general equation corresponding to a multiple connected domain, [4]: 
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 1

2 2  
n

t i i

i A

M G k A G ( y,z ) dydz, 


   
 

(32) 

 

which now becomes: 
 

 
1 12  2t

A

M G k A G ( y,z )dydz.   
 

(33) 

 

The area 
1A of the surface bound by the inner ellipse is given by: 

 

 
2

1  A ab   
(34) 

 

while the area A is: 
 

 
2

0 1 1  A A A ( ) ab      
(35) 

 

For the calculus of the double integral in equation (33), the following substitution can be used: 
 

  cosy a  ;      sinz b  ,     1[ , ]  ,    0  2[ , ]   
(36) 

 

The second term in Prandtl’s formula, given in equation (33), thus becomes: 
 

 

2 13 3 3 3
2 2 2

2 2 2 2

0

2  
2 1 1

A

G a b G a b
G dydz d ( )d ( ) .

a b a b





  
         

   
 

(37) 

 

Further substitution of equations (31), (34) and (37) in (33) yield the following Prandtl’s formula 

for elliptic ring cross sections: 
 

 

3 3
4

2 2

 
1t

a b
M G ( )

a b


  

  
(38) 

 

If the specific twist is determined by aid of the general formula: 
 

 

t

t

M

GI
 

 

(39) 

 

The conventional twisting moment of inertia has the expression, [4]: 
 

 

3 3
4 4

2 2

 
1 1t te

a b
I ( ) I ( )

a b


    

  
(40) 

 

where
teI represents the conventional twisting moment of inertia for a filled cross section bound by the 

outer ellipse. 

Equation (40) shows that by introducing a centred elliptical hole of a   and b   half-axes, the 

conventional twisting moment of inertia is reduced 
41( ) times, while the area A of the cross 

section is reduced 
21( ) times.  This result shows that the decrease of the conventional twisting 

moment of inertia is a lot less than the corresponding area decrease, which indicates that the use of 

annular cross sections represents an important way of reducing material consumption. 

3.3. Stress state 

As the stress function has the same form as in the case of rods with filled elliptical cross sections when 

subjected to torsion, the components of the stress vector are also yielded by the first forms of 

equations (19), as: 
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2

2 2

2 t
xy

t

Ma z

a b I
  


;    

2

2 2

2 t
xz

t

Mb y

a b I
 


 

 

The size of the stress vector  is: 
 

 

2 2 4 2 4 2

2 2

2t
xy xz

t

M
( y,z ) a z b y

I a b
     


  

(41) 

 

where the conventional moment of inertia 
tI is given by equation (40). This leads to: 

 

 

2 2 2

2 4 2 4

2

 1

tM z b y
( y,z )

ab ( ) b a


 
 


  

(42) 

 

The maximum stress is reached on the outer ellipse, at the small half-axis ends and is expressed as: 
 

 
max 2 4

2

 1

t t

t

M M

ab ( ) W


 
 


 

(43) 

 

while the minimum stress on the outer contour is reached at the ends of the large half-axis, as: 
 

 
min 2 4

2

 1

tM

a b( )


 



 

(44) 

 

Taking into account equation (41) for 
tI , the twisting strength modulus is:  

 

 

2
4 4 

1 1
2

t te

ab
W ( ) W ( )


    

 
(45) 

 

where
teW is the strength modulus of a filled elliptical cross section bound by the outer ellipse. 

It can be noticed that the use of an elliptical ring cross section has a similar effect upon the 

conventional moment of inertia, by reducing it proportionally to 41  .  This result confirms that the 

use of elliptic ring cross sections represents an efficient solution to economize material as far as 

rigidity is concerned, as well as in terms of strength. 

Figure 6 graphically illustrates the spatial distribution of the stress vector, made dimensionless by 

report to the 
max stress. 

 

y z ( )

 

Figure 6. Stress vector   distribution over an elliptical 

ring cross section with 0 5.  and 0 6b . a . 

z

y


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3.4. Axial displacement over the transverse cross section 

As the stress function for the considered situation is the same as in the case of filled elliptical cross 

section, the axial displacement uof the cross section is also given by equation (28), in which, the 

definition domain is now the annular transverse cross section.A three-dimensional image of this 

deformed cross section is shown in figure 7. 

 

y z u( )

 

Figure 7.  Strain state of an elliptical ring cross 

section with 0 5.  and 0 6b . a . 

4. Conclusions 

Based upon previously determined equations for the torsion of rods with multiple connected domains 

as cross sections, the present paper determines the particular solution for elliptic and elliptic ring cross 

sections.  For both considered situations, the stress function, specific twist, stress state and axial 

displacements are determined analytically.  By aid of the MathCAD environment, the obtained 

mathematical model was implemented for a specific situation and the yielded tangent stresses as well 

as the strained transverse cross section were represented as both 3D images and contour lines. 
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