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Abstract. This paper presents the challenges encountered during the structural design of a 
high-rise building located in a seismic area. The construction is an office building, it has 20 
stories including the basement levels and a narrow base. Some of the challenges are: providing 
an accurate structural system to resist the wind and earthquake actions and to design a proper 
foundation to avoid the overturning of the entire structure. Another important aspect is to limit 
the stories drift but at the same time provide an open space for the office area. Hybrid 
structures do not behave like reinforced concrete structures in the sense of Eurocode 2 nor like 
composite structures in the sense of Eurocode 4. For this reason and due to the lack of 
knowledge related to the problem of force transmission between steel and concrete the design 
of structures with hybrid steel-concrete elements can become very difficult. Several models are 
analysed comparing structural systems made of reinforced concrete, ones made of hybrid steel-
concrete elements and several other types of systems. 

1. Introduction 
The strength and safety of buildings are the most important requirements that must be fulfilled and 
carefully designed by the structural engineer. This can be achieved by a very clear understanding of 
the main factors that influence the behaviour of the structure. At the same time, choosing an 
appropriate structural system is very important. 
Since the beginning of time the main aspirations of man were to build upward and to span long 
distances. The Great Fire in Chicago and the restricted construction area in New York City provided 
ever so more the need to build upward. Influential engineers and architects teamed up and created the 
first and second Chicago Schools of architecture. Their work can today be seen in the skyline of these 
two cities. Fazlur Kahn, a Bangladeshi American structural engineer, recognized that for high-rise 
buildings the traditional frame system for resisting wind loads is too expensive. He proposed to view 
the high-rise structure as a huge upright cantilever beam. Thus the framed-tube system was created. 
This system was later updated to a trussed-tube for John Hancock Centre in Chicago, which has 30% 
less steel than similar tall buildings, and to a bundled-tube system in Chicago’s Sears Tower (now the 
Willis Tower) which held the world’s tallest building title for more than 20 years. 
These structural systems are efficient for buildings over 50 stories. For 15-20 stories structures the 
frame system remains the best choice. Rigid frames were developed in the late 1800s for structures 
made of iron and reinforced concrete. However, if the base of the structure is very narrow compared to 
its height an inner core needs to be adopted for resisting the lateral loads. Usually, for reinforced 
concrete structures, the inner core is made of reinforced concrete load bearing walls and the perimeter 
is made of frames. Even for 10-20 stories buildings very large uplift forces appear at the base of the 
inner core. These forces can cause the need for very large reinforcement areas for the inner core walls 
and also foundation design problems. In order to distribute the inner core forces to the perimeter 
frames deep beams and relatively closely spaced columns on the building perimeter can be adopted. 
However, often times the architectural solution does not allow for these obstructions. If the buildings 
height-to-width ratio exceeds 6 the structural system becomes uneconomical [1]. 
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Most modern high-rise buildings incorporate an inner core housing the staircase and elevators along 
with a column-free floor space between the core and perimeter columns. This system allows for 
greater functionality, but also effectively disconnects the two major structural elements available to 
resist the overturning forces. This uncoupling of the inner core from the perimeter frames greatly 
reduces the system’s capacity of resisting lateral loads. One method for solving this problem is to 
incorporate outriggers. Outriggers have been incorporated in high-rise buildings within the last 35 
years. An outrigger is a rigid horizontal structure designed to improve building overturning stiffness 
and strength by connecting the inner core to the perimeter columns. Depending on the building height 
range it can be placed at the top of the building, at mid-height or in pairs mid-height and at the top. In 
order to uniformly distribute the forces to the perimeter columns belts – such as trusses or walls 
encircling the building – can be implemented at the level where the outrigger is located [1]. 
Heavily loaded structures can be provided with steel profiles embedded in the concrete. These 
structures are called hybrid structures or SRC (Steel Reinforced Concrete). These structures are neither 
reinforced concrete structures in the sense of Eurocode 2 [2], nor composite steel-concrete structures 
in the sense of Eurocode 4 [3]. There is no guidance in Eurocode 4 on how to evaluate and design this 
type of structures. There is also no information in classical literature references [4, 5, 6, 7, 8]. Some 
partial design provisions are mentioned in Eurocode 8 [9] or AISC 341-10 [8], but are not very 
explicit. In the past decade, extensive experimental research was carried out for the study of hybrid 
walls [10, 11, 12, 13] and numerical models were developed, such as: multiple vertical-line-element 
models [14, 15], fibre beam-column models by PEER [16], and multi-layer shear element models [17, 
18]. However, all this work did not lead to practical design tools [19]. 
The aim of this paper is to present different configurations of structural systems – some presented in 
this chapter – their behaviour and efficiency, for a 17 storey reinforced concrete office building 
located in a seismic area. 

2. Modelling in Etabs 

2.1. Etabs software 
Etabs is an engineering software package for the structural analysis and design of buildings. The 
software includes the design of steel and concrete frames with automated optimization, composite 
beams, composite columns, steel joists and concrete and masonry walls and many other features [20]. 

2.2. Models description 
The common features of the models taken into consideration are the following: 

• height range: ground floor and 16 levels; 
• ground floor height of 4.5 m and current level height of 3.5 m resulting in a total height of the 

building of 60.5 m; 
• floor dimensions of 19.2 m x 18.0 m; 
• open office area having a width of 5.4 m; 
• inner core of 8.4 m x 7.2 m with 2 stair cases and 2 elevator shafts; 
• inner core thickness of 60 cm for the first three levels, 50 cm for the next three levels and 40 

cm for the rest having uniform 80 cm thick bulbs and the corners and at mid-span (see figure 
1); 

• perimeter frames made of 80 cm x 80 cm columns and 40 cm x 60 cm beams; 
• 20 cm thick flat slabs; 
• C40/50 concrete grade. 

The models taken into consideration have the following particularities: 
• model A is the base model having the particularities presented in the previous paragraphs 

(figure 1); 
• model B has 6 HE600B profiles encased in the inner core corners (figure 2) on the first 6 

levels effectively creating a hybrid steel-concrete structure. The steel grade is S355; 
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Figure 1. Model A: floor plan. 

 

 
Figure 2. Model B: floor plan. 
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• model C has one outrigger and a truss belt on the entire perimeter placed at the top level of the 
building. Reinforced concrete 40 cm x 60 cm beams are used to connect the inner core to the 
perimeter columns (only at these levels) and 200 mm x 200 mm x 12.5 mm tube profiles are 
used as braces for the outrigger and belts. The steel grade is S355 (figure 3); 

• model D has one outrigger and belts on the height of the 8th floor of the structure. The make-
up of the outrigger and belts is the same as model C (figure 4); 

• model E has two outriggers and belts: one at the top level and one on the height of the 8th floor 
of the structure. The make-up of the outrigger and belts is the same as model C (figure 5); 

• model F has the inner core connected to the perimeter columns with 40 cm x 60 cm reinforced 
concrete beams (figure 6). 

 

 

 

 

 

 
Figure 3. Model C: elevation.  Figure 4. Model D: elevation.  Figure 5. Model E: elevation. 
 

The dimensions of the structural elements were established after a preliminary design according to CR 
2-1-1.1/2013 [21] and SR EN 1992-1-1-2004. 
The loads are the own weight of the structure estimated by the software, floor finish loads of 2.5 
kN/m2, curtain walls loads of 2.0 kN/m, live loads of 2.5 kN/m2 in the office area and 3.0 kN/m2 on 
the hallways and stairs. The horizontal loads such as wind and earthquake were evaluated according to 
CR 1-1-4/2012 [22] and P100-1/2013 [23], respectively. The location of the building is Iași, Romania 
having a peak ground acceleration ag = 0.25g and a corner period TC = 0.7 s. 
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The earthquake action is introduced in the program by using a response spectrum function. The design 
spectral values are computed according to P100-1/2013 by using equation (1): 

 ( ) ( )
d g

T
S T a

q
β

=  (1) 

Where: 
• Sd(T) is the design/inelastic spectral value; 
• ag – peak ground acceleration; 
• β(T) – normalised elastic spectral value; 
• q – behaviour factor of the structure. 

 

 
Figure 6. Model F: floor plan. 

3. Results 
The following results were considered for discussion: 

• the required reinforcement area in the inner core of the structure; 
• the story drift. 

The story drifts for all models is presented in figure 7. According to P100-1/2013, annex E, the 
allowable storey drift in the Serviceability Limit State is 0.005 and for the Ultimate Limit State is 
0.025. 
The required reinforcement area for the inner core is designed using the Etabs software. The values at 
the base of the structure are presented in figure 8. By comparing models A and B, a reduction of 
reinforcement area of 11.9% was recorded. The models having outriggers and belts (models C, D and 
E) all present great reductions in reinforcement area (13.3%, 20.8% and 24.2%, respectively). Model 
F, having reinforced concrete beams linking the inner core to the perimeter columns presents a 
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reduction in reinforcement of 15.7% in the inner core, but reinforcement needs to be added for the 
additional beams. 

 

 
Figure 7. Story drift. 

 

 
Figure 8. Required reinforcement area for the inner core: all models. 
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Figure 9. Required reinforcement area for the inner core: models A and D. 

 
The approximate quantity of steel required for one outrigger is 20 t. The reduction in reinforcement, of 
model D, for the first 6 levels of the structure is approximately 50.3 t. These reinforcement areas are 
presented in figure 9. 

4. Conclusions 
Structural engineers today have a great challenge to design tall buildings using cost effective solutions. 
At the same time, the architectural requirements became more demanding. Open office space and large 
windows are some of the requirements which impede the use of load bearing walls, braces, trusses or 
deep beams. 
The structural systems analysed in this paper are usually used for buildings at least 40-50 stories tall. 
However, the results show that an important economy of reinforcement can be achieved by using these 
solutions even for buildings less than 20 stories tall. The amount of steel required for the outriggers 
does not exceed the amount of reinforcement saved in the inner core. The reduction of steel quantity 
for model D is significant (approximately 30.2 t). The main disadvantage of outriggers and truss belts 
is from the architectural point of view. Braces and trusses are used both in the office area and on the 
perimeter of the building, in the window area. However, this outcome might prove reasonable in 
compromising the architecture of a single level of the building with respect to the gain in material 
economy. Models C, D and E reflect the fact that the optimum position of one outrigger is at mid-
height of the building. The efficiency of the outrigger placed at the middle of the building, in 
comparison to the placement at the top, is almost doubled as seen from the consumption of 
reinforcement (figures 8 and 9). The addition of 2 outriggers – one at the top and one at the middle of 
the building – show a very small improvement in comparison to the mid-height placement.  
Model B shows a very small improvement. However, the use of steel profiles embedded in the inner 
core is beneficial for structures with very high axial forces in these areas. The main problem remains 
with the limited knowledge regarding the design of such structures, the load transfer and connections 
between steel and concrete. 
The story drift does not exceed the allowable limit presented in P100-1/2013 for all models. However, 
a great reduction is observed for the models having outriggers (figure 7). The largest values were 
recorded, as expected, for the base model A and for model B having the hybrid column structural 
system.  
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