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Abstract. Piezoelectric actuator (PZT) is used widely in nano positioning, nano measurement 
and nano mechanics. However, its hysteresis, creep and nonlinearity affect the positioning 
accuracy seriously, especially the hysteresis. The paper proposes a BP neural network 
modeling method based on global error to model the hysteresis of the PZT. The network 
contains input, hidden and output layers. Its training goal is based on global errors. And the 
network could adjust the connection weight of the network dynamically according to different 
inputs till the global errors reduce to the threshold. Experiments prove that the method could fit 
the hysteresis curves of the PZT well. And the training errors could be controlled under 0.05.  

1. Introduction 
The piezoelectric driver is a commonly nano positioner due to its high precision and accuracy [1, 2]. 
However, it has three main characteristics: hysteresis, creep and nonlinearity, leading to errors during 
positioning [3]. Especially, its hysteresis affects the positioning accuracy seriously. As reported in 
some papers, the positioning errors could achieve to several tens of nanometers. And the errors will 
increase apparently as the driving range raises.  

To reduce the positioning errors induced by the hysteresis, many research groups proposed many 
methods to model the hysteresis characteristic of the PZT, such as Preisach [4] model, Prandtl-
Ishlinskii model [5-7], Bouc-Wen model [8-10] and Duhem model [11]. Preisach model is an earliest 
proposed method. Its principle is to describe the hysteresis by relay operator. Many researchers 
proposed methods to improve the Preisach model. However, the model needs many parameters, 
resulting to complex computing. Habineza D proposed the Bouc-Wen model. The precision of the 
model is limited. Prandtl-Ishlinskii model is a commonly used modeling method. It is simple. Its 
parameters and computation are less than others. However, its errors are larger. Some researcher 
proposed polynomial fitting method [12]. Its precision is limited when the inputs are dynamic. Some 
researchers proposed modeling methods based on neural networks [13, 14]. The methods have good 
precision and accuracy. Therefore, the methods exist local extreme and false saturation. 

 In view of the high precision and accuracy of BP neural networks, the paper proposes a modeling 
method based on BP neural networks. And the method is based on global errors, avoiding the local 
extreme and false saturation. The network contains inputs, conceal and outputs. It could adjust the 
connection weight of the network dynamically according to different inputs till the global errors could 
reduce to the preset value. 
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2. BP Neural Network Based on Global Errors 
The structure of a BP neural network is shown in figure 1. We use the following equations to describe 
the network. 

yሺkሻ ൌ ݂ሺݔଵ, ,ଶݔ ,ଷݔ … ,  ௡ሻ                                                     (1)ݔ

݂ሺxሻ ൌ
ଵ

ଵା௘షೣ
                                                                   (2) 

According to the two equations, we can get the output of the input layers:  

௜ܱ
ሺଵሻ ൌ ௜ܺሺ݇ሻ, ݅ ൌ 1,2,3… , ݊                                                      (3) 

Then the input and output of the hidden layer are as follows: 
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The output of the output layer is: 
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The global error of the neural network is: 
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ଵ
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The neurons have learning and working states. In working state, the neural networks calculate the 
output according equation (6). In learning state, the neural network will calculate outputs according 
equations (1) and (2). The weight values are tuned according to equations (4)-(6). If the global errors 
(equation 7) are adjusted to the threshold 0.05, the learning state is over.  
 

 

Figure 1. The structure of the BP neural network 

3. Experiments and Results 
Experiments are carried out to achieve the hysteresis curve of the PZT at different frequencies. The 
PZT is a nano-positioning stage (NP100XY25Z) from nPoint corporation (USA). The data acquisition 
system from National Instruments (USA) is applied to achieve the input and output signals. 

Selecting three triangular voltage signals at 10Hz, 50Hz and 100Hz as input signals, the PZT 
scanners would output displacement signals. The data acquisition system records the inputs and 
outputs of ascending and descending sections. The hysteresis curves describing the inputs and outputs 
are shown in figure 2. The curves indicate that the hysteresis becomes more apparent at higher 
frequency. So the frequency of the input is one main factor affecting the hysteresis. In our BP neural 
network, the frequency is used as one training input. 
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Figure 2. The hysteresis curves of the PZT at 10Hz, 50Hz and 100Hz 
 

Half of the above experimental data are used as the training data of the neural network. The rest are 
used as the testing data. The neural network has 21 input layers (containing the frequency), 10 hidden 
layers and one output layers. The training steps are as follows: 

(1)Set the initial value of the system. The original weight value of the neural network is set to be 
random value. The hidden layers are set to be 10. The global errors are set to be 0.05. 

(2)The current outputs of the neural network can be achieved using training data according to 
equations (1)(2)  . 

(3)The weight increment can be achieved according to equation (3). 
(4)The weight value could be calculated using equations (4) (5). 
(5)Calculate the global error and determine whether it meets the requirements. If it does, the 

training is ending. If not, step (2)-(5) are repeated. 
While training, the neural network would adjust the weight value dynamically until the global 

errors are down to the setting value (0.05). After training, the neural network is used to fit the 
hysteresis curve at 10Hz, 50Hz and 100Hz. The neural network based on the global errors yields good 
results from figures 3-5. 

 
Figure 3. The fitting result using the new neural network for the PZT at 10Hz 
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Figure 4. The fitting result using the new neural network for the PZT at 50Hz 
 

 

Figure 5. The fitting result using the new neural network for the PZT at 100Hz 

4. Conclusions 
The paper proposes a new BP neural network based on global errors to model the hysteresis of PZT. 
Since the hysteresis become more apparent with the increment of the input frequency, the new neural 
network set the frequency as one input. The new method could adjust the connection weight of the 
network dynamically according to different inputs until the global errors reduce to the threshold. 
Experiments prove that the method could model the hysteresis curve very well. Our future work will 
focus on how to achieve the inverse model of the new BP neural network. Then the feedforward 
controller based on the inverse model could be applied to PZT and improve its positioning precision 
and accuracy. 
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