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Abstract. The photonic band and the equifrequency surface of the weakly modulated 
one-dimensional Fibonacci sequence photonic crystal have been calculated by the finite 
difference time domain method and the analytical method, respectively, where the analytical 
method is based on the transfer matrix method. The results show that the equifrequency surface 
of the photonic crystals calculated by numerical method may lead to a completely wrong 
conclusion. Therefore, in the study of weakly modulated photonic crystals, the study of 
analytical methods is very necessary. 

1. Introduction 
The concept of photonic crystals (PhCs) is proposed by E. Yablonovich and S. John in the late 1980. 
On the study of PhCs, how to calculate the dispersion relation of this kind of new artificial material, 
that is how to calculate the photonic bands (PBs) and the Equifrequency Surfaces (EFS) of PhCs, has 
always been one of the focus of scientists [1, 2]. So during these years, scientists have obtained a 
variety of mature methods for calculating the PBs and the EFS of PhCs, such as plane wave expansion 
method, time-domain finite difference (FDTD) method, finite element method, etc. [3, 4]. However, 
most of these methods are numerical methods. Although there are some advantage for the numerical 
method, but there are also inherent defects for them. One of the defects is that there is always artificial 
intervention in the numerical method. For example, there is a problem for judging the convergence of 
the equation solution in solving the eigenequation for the plane wave expansion method; and how to 
define the power spectrum peaks is a problem for the FDTD method. These artificial interventions 
maybe lead to errors on the final results in calculating the dispersion of the weakly modulated PhCs.    

In this paper, the analytical calculation of physical quantities, such as PBs, EFS, wave vector and 
group velocity of one-dimensional (1D) Fibonacci sequence (FS) PhCs has been studied by the 
transfer matrix method (TMM) [5], and the results of the analytical and numerical calculation for the 
PBs and the EFS of the weakly modulated 1D FS PhCs have been studied comparatively.   

2. Model and Formulas 
In this paper, we use the same way in literature [6] to construct the cell of the order 2 1D FS PhCs, in 
which the layer A and B constituted by materials A and B are arranged in the order of ABAAB. Then, 
the 1D PhCs has been constructed by a repetition of blocks of the cell with infinite periods. When the 
layers A and B have the same thickness d, the lattice constant of the PhCs will be D=5d.  

When the films arrange along z direction, the medium distribution of the 1D PhCs is uniform in x 
and y directions. We assume that the medium constituting the 1D PhCs is an isotropic homogeneous 
and lossless dielectric, and the monochromatic electromagnetic wave (EMW) with frequency ω is 
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transmitting in the x-z plane. Thus, the EMW will have a propagation factor β in the x direction, and it 
will satisfy  
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here, kiz (i=1,2,···) is the component of the wave vector along z direction in the i-th layer medium; ni is 

the refractive index of the i-th film;  cD  2~  is the normalized frequency; D 
~

is the 
normalized wave number along x direction, c is light speed in vacuum. 

In addition, due to the periodicity of the films, the magnetic field of the TMy mode (Hy,Ex,Ez) of the 
EMW between the n-1th period and the nth period in the order 2 1D FS PhCs can be connected by the 
transfer matrix5, and the sum of the main diagonal elements of the transfer matrix for the TMy mode 
can be written as  
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here, εi (i=1,2) is dielectric constant of materials A and B, respectively. 
Furthermore, since the medium composing the 1D FS PhCs periodically distribute along the z 

direction, the EMW transmitting along z direction should be the Bloch wave. Thus, on the condition 
|SUM2M|<2, the Bloch wave number κ in z direction for the TMy mode can be written as 







 

2
cos~ 21 MSUM

D                                 (3) 

here, ~ defined as the normalized Bloch wave number along z direction. And the group velocity of 
EMW in the 1D PhCs can be expressed as 
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Moreover, we can prove7 that when the dot product (DP) between the unit wave vector and the unit 
group velocity is ±1, it indicates that the PhCs can be equivalent to isotropic right-handed (RH) or 
left-handed (LH) materials, respectively; when the DP is belong to the range (0, 1) or the range (-1, 0), 
it indicates that the PhCs can be equivalent to an anisotropic RH or LH material. 

Thus, if let 0
~
 , the PBs of the order 2 1D FS PhCs can be analytically calculated by using 

equations (1) and (3); if let ~  be in the range   ~2,~2
~

minmin nn , where nmin is the 
minimum refractive index in materials A and B, the EFS of the TMy mode of the 1D PhCs can also be 
analytically calculated by the same formulas. Since ~  in formula (3) is the solution of the simple 
Brillouin zone, it should be expanded in calculating the EFS. And with the aid of the value of the dot 
product, we can further quantitatively determine whether the EFS is correct or not. 

3. Numerical and Analytical Discussion 
Using the FDTD method and the formulas above, we studied the TMy mode dispersion relation of this 
kind of 1D PhCs model composed of aluminum (Al) and boron (B). The frequency range of the EMW 
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is [22.27, 24.31]nm, which is in the soft x-ray band. The relative dielectric constant of Al and B is 
0.96316 and 0.82184, respectively [8]. It can be seen from the refractive indices of Al and B that this 
model is a weakly modulated 1D PhCs.  
 

 

Figure 1. PBs of the order 2 1D FS PhCs 
 

The PBs of the 1D FS PhCs is shown in figure 1. In figure 1, the horizontal and vertical coordinates 
are the normalized wave vector and the normalized frequency, respectively. The scatter and the solid 
line are the results obtained by the FDTD method and the analytical method, respectively. See the 
legend in figure 1. The inset of figure 1 is the PBs between the normalized frequency intervals [0.45, 
0.55]. It can be seen from figure 1 that there is a small band gap between the first and second PBs, and 
the numerical results are in good agreement with the analytical results.  

We further studied the EFS and the DP of the TMy mode. The results are shown in figure 2 and 
figure 3. 

Figure 2 shows the results of the first PBs, where figure 2(a) and 2(b) are the results of the EFS of 
the TMy mode obtained by the FDTD and the analytical method, respectively, figure 2(c) is the 
analytical result of the DP between the unit wave vector and the unit group velocity changing with the 
wave vector angle at different frequencies. In figure 2(a) and 2(b), the horizontal and vertical axes are 
normalized wave vectors along z and x direction, respectively. In figure 2(c), the horizontal axis is the 
arctangent of the ratio of β to κ, its unit is degree; and the vertical axis is the value of dot product, its 
unit is s-1.  
 

 

Figure 2. The results of the TMy mode of the first PBs. (a) the FDTD results of the EFS. (b) the 

analytical results of the EFS. (c) the results of gvk ˆˆ 
 changing with the wave vector angle, where (c1), 

(c2) and (c3) show the results at the normalized frequency 0.1, 0.3 and 0.5, respectively. 
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It can be seen from figure 2(a) and 2(b) that the numerical results of EFS are in good agreement 
with the analytical results in the first PBs. Both the numerical results and the analytical results indicate 
that the order 2 FS 1D PhCs can be equivalent to an isotropic material with RH characteristics in the 
first PBs. This result is also confirmed by figure 2(c). In figure 2(c), the diagrams of (c1), (c2) and (c3) 
are the results of the DP at the normalized frequency 0.1, 0.3, and 0.5, respectively. It can be seen 
from the three diagrams that the DP is always 1 in the first PBs, which indicates that the PhCs can be 
equivalent to a isotropic material with RH characteristics. Thus, we have the same conclusion by 
figure 2(a), 2(b) and 2(c). 

The further results of the TMy mode of the second PBs are shown in figure 3. Figure 3(a) and 3(b) 
are also the EFS results obtained by the FDTD method and the formulas above, respectively. In figure 
3(c), the diagrams of (c1), (c2) and (c3) are the analytical results of the DP between the unit wave 
vector and the unit group velocity changing with the wave vector angle at the normalized frequency 
0.628, 0.804 and 0.980, respectively. The horizontal and vertical axes of figure 3(a), 3(b) and 3(c) are 
same with those of figure 2(a), 2(b) and 2(c), respectively.  
 

 

Figure 3. The results of the TMy mode of the second PBs. (a) the FDTD results of the EFS. (b) the 

analytical results of the EFS. (c) the results of gvk ˆˆ 
 changing with the wave vector angle, where (c1), 

(c2) and (c3) show the results at the normalized frequency 0.628, 0.804 and 0.980, respectively. 
 

It can be seen from figure 3(a), the numerical result shows that the order 2 FS 1D PhCs exhibits an 
approximately isotropic property with LH characteristics. But the analytical result coming from figure 
3(b) shows that the 1D PhCs is still equivalent to an isotropic material with RH characteristics. 
Obviously, this result tell us that either figure 3(a) or figure 3(b) must be wrong. However, based on 
the further analysis about the result coming from figure 3(c), it can be found that the conclusion 
coming from figure 3(b) has been supported. It can be seen from the three diagrams of figure 3(c) that 
the DP is 1 in most of the angles for every frequency. There is only a very little fluctuation in a small 
angle in figure 3(c1). The little fluctuation can also be confirmed by the EFS pattern of figure 3(b) in 
the low frequency. This phenomenon only means that the PhCs has a slight deviation from the 
isotropic property in the low frequency. But the results in figure 3(c) confirm generally that the PhCs 
still be approximately equivalent to an isotropic material with RH characteristics. Therefore, we have 
to say that the result of figure 3(a) is wrong. 

4. Conclusion 
The TMM is used to give the formulas for calculating the PBs, the EFS, the group velocity and the 
wave vector of the 1D FS PhCs. On this basis, the analytical results of the dispersion relation of the 
PhCs are compared with the numerical results obtained by the FDTD method. The result shows that 
both the numerical methods and the analytical method have the same accuracy in calculating the PBs 
of the weakly modulated PhCs. But the result also shows that when the numerical method is used to 
calculate the EFS of a weakly modulated PhCs, errors in numerical calculation for EFS easily tend to 
an erroneous result. At the same time, the calculation results for the physical properties of the chiral 
characteristics of the medium also support the above conclusions. 
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