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Abstract. Alkali-activated materials based on the alkali-activated blast furnace slag (AABFS) 
seem to be a suitable alternative construction material due to the environmental and economic 
aspects. More widespread application potential could be supported by the utilization of fabric 
reinforcement into the matrix to form AABFS composite with improved mechanical properties. 
The basalt fibres or fabrics (BFs) represent a reinforcing material suitable for the AABFS due to 
its favourable price/properties ratio. However, the question of fibres stability under the alkaline 
conditions should be taken into account. The effect of BFs implementation in one or more layers 
into various types of matrices to the mechanical properties was studied with the regard  
to the compressive and flexural strengths. The used matrices were based on the alkali-activation 
of the BFS with various activators. The fabric/matrix adhesion same as the transition zone 
properties were studied using the SEM analysis and pull-out tests. Indication of appreciable 
improvement of mechanical properties utilizing one layer of BFs for some of the mixtures 
activated using sodium water glass and sodium carbonate was found out.  
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1.  Introduction 
Alkali-activation of secondary raw materials like blast furnace slag (BFS) using the convenient alkaline 
activator allows to produce alternative construction materials e. g. AABFS with many favourable 
properties in contrary to the traditional ordinary Portland cement (OPC). [1, 2] Starting with the much-
discussed environmental benefits of carbon dioxide emissions lowering along with the ability to achieve 
lower cost when the composition of the alkali-activated materials is optimised [3] and continued by 
many favourable properties like lower hydration heat in contrary to the OPC [4], high resistance  
o the aggressive environments [5] or good high temperature performances [6]. Still, there are some 
disadvantages like high shrinkage accompanied with formation of micro and macro cracks or formation 
of efflorescences as described in publication [7].  

AABFSs represents suitable matrix for basalt fabric implementation to form inorganic composite 
with improved mechanical and thermal properties as well as durability. The main purposes  
of fibre/fabric reinforcement of the matrix are to provide a control of the cracking and to increase  
the fracture toughness of the brittle matrix through the stress transfer during both micro and macro-
cracking. The ability of the stress transfer depends on the volumetric fibre fraction, fibres orientation 
and distribution. However, in order to achieve the desired properties, the existence of quality adhesion 
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between the fibres and the matrix (F/M) same as formation of transition zone at their interface is 
necessary as discussed in studies [8–10]. Since the AABFS matrix forms highly alkaline environment 
for the reinforcing material and due to the price/parameter ratio basalt fibres have been chosen instead 
of the alkali resistant glass fibres in this paper.  

There were no publications where the same type of matrix and basalt fabric were used, otherwise 
that is the reason why this paper has originated. Many authors used chopped basalt fibres instead  
of the fabric, hence possibilities of utilization of basalt fibres as a reinforcing material were tested. 
Timukal et al. [11] reported that reinforcement of Na2SiO3 and NaOH activated fly ash matrix utilizing 
10 wt. % of basalt fibres led to the increase of compressive strength about 37% after 28 days but 
utilization of the dosage higher than 15 wt. % resulted in decrease of compressive strength in contrary 
to the reference because of lower precursor dissolution leading to the less binder content. Similar results 
were presented in Rill et al.´s paper [12] where the addition of 10 wt. % of the BFs to the matrix based 
on the metakaolin activated using the KOH resulted in the increase of flexural strength from 1.9 to  
19.5 MPa. Masi et al. [13] noted that just a minimal chemical interaction between the AAM (based  
on fly ash activated with sodium aluminate solution) and the BFs had been found. They also reported 
improvement of the flexural strength between 600 and 1000°C due to the better F/M interaction after 
the sintering. These materials have the potential for applications at elevated temperatures up to about 
800°C because they represent replacement of ceramic based composites for the midrange temperature 
applications. This issue was discussed more in study of Welter et al. [14].  

This paper focuses on the preliminary studies with a goal to determine the influence of the basalt 
fabric utilization to the AABFS matrix on the mechanical properties and possibilities of characterization 
of the F/M interaction. 

2.  Experimental procedure 

2.1.  Raw materials 

2.1.1.  Blast furnace slag (BFS). Blast furnace slag was obtained from Kotouč Štramberk, Ltd. having  
a Blaine specific surface area of 400 m2∙kg−1. Its chemical composition is given in Table 1. The BFS 
was 84% amorphous, while the rest was crystalline (akermanite – 9.5%, calcite – 3.7%, 
merwinite – 2.3% and quartz – 0.5%) according to the X-ray diffraction (XRD) using Rietveld method.  

Table 1. Chemical composition of the BFS determined by X-ray fluorescence (XRF) analysis. 

Chemical composition in wt. % 

CaO SiO2 MgO Al2O3 SO3 TiO2 K2O MnO Na2O Fe2O3 
41.1 34.7 10.5 9.1 1.4 1.0 0.9 0.6 0.4 0.3 

2.1.2.  Alkaline activators. Liquid sodium water glass (WG) obtained from Vodní sklo, Inc.  – Silicate 
modulus (Ms) = 2.24; Sodium hydroxide (SH) – PENTA Ltd. (pure); Sodium carbonate (SC) –  
INCHEMA Ltd. (pure). 

2.1.3.  Basalt fabric (BF). Basalt fabric (BF) in form of filament yarns connected into the square net was 
provided by the Institute for textile technique at RWTH Aachen University. BFs have been used in form 
of biaxial warp knitted textile but also as unique filaments yarns in same cases (pull-out test, SEM). 
Filament yarns have different tex in longitudinal (2.6) and transverse directions (1.3). Table 2 gives  
the information about the chemical composition of basalt fibres from Kammeney Vek determined  
by X-ray fluorescence (XRF). Amorphous structure of BFs was confirmed using the XRD. 
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Table 2. Chemical composition of the BFs from Kammeney Vek determined by XRF analysis. 

Chemical composition in wt. % 

SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O TiO2 Other 
55.7 15.4 10.8 7.4 4.1 2.4 1.5 1.2 1.4 

2.1.4.  Other materials. Standard siliceous sand according to ČSN EN 196-1 was used for the mortar 
preparation. STACHEMENT AC 600 produced by Stachema Kolín Ltd. was used as a shrinkage 
reducing admixture (SRA).  

2.2.  Tests and methods 

2.2.1.  Mechanical properties testing. Testing samples were prepared according to ČSN EN 196-1. 
Specimens with dimension 40 × 40 × 160 mm were used for compressive and flexural strengths (three-
point bend arrangement) determination using the Desttest 4310 Compact A (Beton System, Ltd.). Water 
to binder (w/b) ratio (0.49) was kept the same along with the SRA dosage (0.75 wt. % by the BFS 
weight) and sand to binder ratio (3:1) for all mortars. Various alkaline activator mixtures were used for 
the alkali-activation of the BFS meanwhile. Starting with the WG/SC and WG/SH mixtures with silicate 
modulus (Ms) equal to 0.5 using activator dosage ranging from 6 to 12 wt. % by the BFS weight. 
Demoulded specimens were kept in wet chamber until further testing was done. These tests were 
performed on mortars (reference) and mortars reinforced with the basalt fabric(s). One layer of basalt 
fabric was added to the middle of the specimen commonly, if there were more layers the layers were 
distributed equally, so the same amount of mortar was between the layers always.  

2.2.2.  Single fibre yarn pull-out test. This method was used for a direct estimation of fibre/matrix (F/M) 
interfacial bond properties based on pulling out of a single fibre yarn of its surrounding matrix (mortars). 
Testing samples had shape of cubes (40 × 40 × 40 mm) where the fibre yarn was placed into the middle 
with embedment length (EL) of 5 mm. Pull-out tests were performed for the same EL after 72 hours  
of curing at wet conditions based on previous research. Fifteen samples were tested and evaluated for 
each matrix type. The measurement was done using the Universal mechanical testing machine Instron 
5985 (testing speed 2 mm/min; distance between jaws 100 mm) with a maximal force (Fm) before the 
fibre broke down (fibre breakage about Fm = 333 N) or was pull out determination. Interfacial shear 
bond strength was then calculated based on the Choi´s study [15].  

2.2.3.  SEM analysis. The Zeiss Evo LS 10 microscope with EDX analysis was used for microstructure 
of interfacial zone properties study. Accelerating voltage was 10 kV. Samples were AABFS pastes 
(w/b = 0.36) reinforced with one yarn of basalt fibres. They were broken down after defined period 
(7/28 days of hydration) and excessive fibres were removed. These fragments were placed on the carbon 
tape, sputter coated with gold and underwent the SEM analysis.  

3.  Results and discussion 

3.1.  WG/SC and WG/SH activated BFS matrices 

Figure 1 and Figure 2 show results of flexural and compressive strengths development as a function  
of alkaline activator dosage and BF reinforcement.  

The highest compressive strength (83.8 ±4.2) MPa was obtained for 10% Na2O WG/SC activated 
matrix without utilization of BFs reinforcement after 112 days.  It should be noticed that increase  
of compressive strength for this mixture have continued up to 112 days while the other activator dosages 
did not show further gain of compressive strength after 56 days of curing. The highest flexural strength 
was found out for 8% Na2O dosage. Differences in flexural strengths for 8 and 10% Na2O dosages are 
less crucial than the ones for the compressive strengths, thus the 10% Na2O seems to be preferable. 



International Conference Building Materials, Products and Technologies

IOP Conf. Series: Materials Science and Engineering 583 (2019) 012012

IOP Publishing

doi:10.1088/1757-899X/583/1/012012

4

 
 
 
 
 
 

WG/SC activated systems showed lower initial mechanical strength when compared to the WG/SH 
activated ones due to the lower pH of initial solution. The most suitable activator dosages for WG/SH 
mixtures were 6% Na2O (56.3 ±4.3 MPa) or 8% Na2O (55 ±5.4 MPa) based on the results obtained after 
112 days. Further increase of activator dosage up to 10 or 12 % led to the compressive and flexural 
strengths decrease. Comparison of the best mixtures of each activator type should be done as well.  
The difference in compressive strengths obtained after 112 days was 36.8% in favour of the WG/SC.  

Addition of one layer of basalt fabric to the 10% Na2O WG/SC led to the compressive strength 
improvement in most cases when compared to the reference. More preciously, it resulted  
in the compressive strengths increase about 24.7; 0.5; 17.5 and 14.5% after 7; 28; 56 and 84 days  
of curing. No beneficial effect of BFs addition in one layer on the mechanical properties was found out 
for other tested WG/SC and WG/SH mixtures in general observation of the entire interval.  

Quality F/M adhesion same as the formation of transition zone is necessary for the effective stress 
transfer realisation, hence for the composite to be effective. No signs of quality F/M adhesion was found 
out for WG/SC. There were some indications of improvement in case of WG/SH after 7 days  
of hydration but no longer as will be described later. The deterioration of compressive and flexural 
strengths can be related to many factors beside the poor F/M adhesion. Starting with the presence  
of local fabric disorientations (leading to ineffective stress transfer, moreover local stress concentration 
and crack propagation) as described in Arnon´s publication [6]. The influence of poor constitution  
of the BFs used same as deterioration of fibres mechanical properties along with the decrease of their 
stress transfer capability due to the degradation under the highly alkaline environments should be 
considered as well.  

   

Figure 1. Flexural and compressive strengths development as a function of alkaline activator dosage 
(6–12% Na2O) and basalt fabric reinforcement for WG/SC activated BFS systems. 
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Figure 2. Flexural and compressive strengths development as a function of alkaline activator dosage 
(6–12% Na2O) and basalt fabric reinforcement for WG/SH activated BFS systems. 

3.2.  Influence of number of fabric layers on the mechanical properties 

Implementation of more fabric layers should be associated with improvement of mechanical properties 
as also mentioned in study of Du et al. [7]. Hence, the most suitable matrix (BFS activated using  
the 10% Na2O WG/SC activator mixture) underwent further testing with increased number of basalt 
fabrics to two and three. The flexural and compressive strengths development is showed in Figure 3.  

The results for samples reinforced with zero or one layer of BFs usually overlap each other 
considering the standard deviations. Still, one layer of the basalt fabric seems to be the most applicable 
when the reinforcement is required. Utilization of two or three layers caused lowering of compressive 
strength during the entire testing period. There was no significant difference between the results for 
reinforcement with two or three layers. Addition of basalt fabric to the matrix can be accompanied with 
the formation of lower amount of hydration products. It could explain the compressive strength drop 
against the non-reinforced reference sample same as the more significant drop with increasing number 
of fabric layers.  

These results partially correlate with the ones presented in Du et al.´s paper [7]. Authors stated that 
in case of cementitious matrix reinforced with basalt fabric either one or two fabric layers had not exhibit 
significant reinforcement efficiency. Which is in a good correlation with the results obtained in this 
paper. On the other hand, Du et al. reported the strain-hardening behaviour when the cementitious matrix 
was reinforced with three or more layers of basalt fabrics. These results do not match the ones presented 
here. This difference should not be caused just by other matrix type. It is related to the deterioration  
of the fibres stress transfer capability due to their degradation. Existence of local stress concentrations 
caused by local bending of the fabric cannot neither be excluded. 



International Conference Building Materials, Products and Technologies

IOP Conf. Series: Materials Science and Engineering 583 (2019) 012012

IOP Publishing

doi:10.1088/1757-899X/583/1/012012

6

 
 
 
 
 
 

   

Figure 3. Flexural and compressive strengths development as function of fabric layers number  
for Ms = 0.5; WG/SC; 10% Na2O based AABFS. 

3.3.  Fibre/matrix transition zone characterization 

Nominal values of the interfacial shear bond strength (Fi) should be taken with reserve due to the limited 
instrumental equipment. Still, it brings interesting option for comparison of different matrices when 
various samples were tested under the same conditions. Embedment length about 5 mm and curing time 
of three days were selected as the most suitable to secure the fibre pulling out instead of its breakage 
while maintaining at least some time for the fibre/matrix interface formation.  

The Fi results for various matrices (6–10% Na2O WG/SC; WG/SH AABFS) reinforced with a single 
yarn of basalt fibres obtained using the pull-out tests are given in Figure 5. Fi increases up to 10% Na2O, 
but beyond this dosage significant drop was noticed for WG/SC activator mixture, which is in a good 
correlation with the compressive strengths results. This was expected, because increase of the Fi is 
closely related to the increase of the compressive strength, respectively mechanical properties 
development at all. It indicates that fibre resistance against the pull-out is realized mainly due  
to the frictional bonds whose strength is related to the strength of the matrix itself and do not indicate 
such a significant contribution of chemical bonds formed between the F/M. The Fi increases with 
increasing activator dosage from 6 to 12% Na2O for WG/SH activator mixture. It seems that chemical 
interactions beside the frictional forces are contributing to the total Fi in case of WG/SH AABFS, 
because the Fi should be lower for the 12% Na2O dosage based on the compressive strength results.  

The SEM images (Figure 4) showed that some sort of chemical F/M interaction could be realised for 
the 10% Na2O WG/SH after 7 days of hydration since the etched surface of the fibres was visible along 
with the fact that matrix fragments extracted from surrounding matrix were adhered to the fibres surface. 
However, this was no longer visible after 28 days of curing. So, it cannot be excluded that the presence 
of protrusions on the fibres could be caused just by lower degree of hydration around the fibres. Still, 
the 10% Na2O WG/SC AABFS did not show any signs of quality adhesion or F/M interaction at all after 
7 or 28 days of curing (there was not observed presence of adhered paste on the surface of the fibres). 
The surface of the fibres sustained smooth without signs of their rapid degradation. 
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Figure 4. SEM images showing the detail of F/M interaction for 10% Na2O WG/SC (left) and 
WG/SH (right) activated BFS pastes reinforced with the BFs after 7 days (top line) and 28 days 

(bottom line) of curing. 

 

Figure 5. Interfacial shear bond strength development as a function of the activator dosage for 
WG/SC and WG/SH AABFS systems with fibre EL 5 mm after 72 hours of hydration. 
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4.  Conclusion 
There was not observed any significant improvement of tested mechanical properties when the various 
matrices were reinforced with one or more layers of basalt fabric. This is related to low F/M interaction 
associated with poor adhesion and ineffective stress transfer realisation or deterioration of fibres stress 
transfer capability due to their degradation. The presence of local fabrics disorientations cannot be 
excluded either. Some sort of noticeable improvement was noticed in case of Ms = 0.5; 10% Na2O 
WG/SC AABFS matrix only. Despite these results utilization of basalt reinforcement in suitable form 
in the AABFS represents a promising possibility to increase the application potential of this material 
type however further and thorough research must be done to accomplish this goal.  
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