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Abstract. A formulation of the geometrically nonlinear plastic flow theory (PFT) based on 

asymmetric measures of stress and strain states is proposed. A main emphasis is placed on the 

physically reasonable decomposition of the deformation gradient into three components: elastic 

distortions, which determine stresses, an orthogonal tensor characterizing the quasi-rigid motion 

of a material and the plastic strain gradient. The quasi-rigid motion of the material is defined by 

introducing for a representative volume element a generalized lattice, which represents its sym-

metry elements. The hypoelastic anisotropic law is introduced in terms of the movable coordi-

nate system associated with the material. The rate of plastic deformations is determined by the 

associated law of plastic flow. As a result, the closed system of constitutive equations of the 

geometrically nonlinear PFT of is obtained. 
 

1. Introduction 
Currently, there is a high need for physically correct description of severe deformation processes (SPD). 

The improvement of SPD technologies leads to the need to solve optimization problems that require 

the implementation of a variety of calculations with different process parameters. To the solve of cor-

responding boundary value problems, it is necessary to use computational effective mathematical mod-

els. At the same time, these material models must be physically relevant. Special attention should be 

paid to the correct description of the geometric nonlinearity arising in the study of SPD processes using 

the methods of deformable solid body mechanics. Usually, various modifications of classical plastic 

flow theories based on symmetric of stress and strain measures are used to describe of SPD. The use of 

a symmetric measure of the strain state (or its velocity) excludes any information about the quasi-rigid 

material motion and the effects associated with the material rotation. In the present work, a modification 

of the classical plastic flow theory based on asymmetric stress and strain measures. Correct geometric 

nonlinearity description is physically ground separation movement on quasirigid (rotational) and defor-

mation. Separating the quasi rigid motion is necessary to introduce the correct constraint between the 

stress and the strain in terms of a rigid moving coordinate system (MCS). The complete motion of the 

continuum is represented as a combination of a quasi-rigid motion of the material (together with the 

MCS) and the deformation one (with respect to the MCS). The stress measure is the Cauchy stress 

tensor, defined in terms of the MSC. The transposed velocity gradient is the total strain measure. The 

quasi-rigid material rotation should not cause changes in the response of the material (for the observer 

in the MCS), so quasi-rigid motion must be excluded from the complete motion; only the strain move-

ment effects on the material response. Determining the quasi-solid motion of the continuum is a difficult 

due to it is impossible to select an undeformable (throughout the whole process) aggregate of any ma-

terial elements, preferably connected with axes or symmetry planes. 
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2. Continuum kinematic 
2.1. Multiplicative decomposition of the deformation gradient 

The classical multiplicative decomposition of the deformation gradient into elastic Fe and plastic Fp 

components [1] is represented by the relation: 

 
e p ,� �F F F  (1) 

where the inelastic component Fp connects the basis vectors of the Lagrangian coordinate system in the 

reference and the plastically deformed configurations. 

In [2, 3], for crystalline materials with an internal structure, a multiplicative decomposition different 

from the classical one (1) was proposed. The motion of deformable crystalline body, which is described 

by the deformation gradient F, is represented by the sequence of plastic deformations (it is assumed that 

plastic deformations do not rotate the MCS associated with the lattice of the crystallite), a rotation of 

the MCS (together with the material) and an elastic distortion of the material with respect to the MCS: 

 
e p ,� � �F F FR  (2) 

where the inelastic component Fp connects the reference and plastically deformed (intermediate un-

loaded) configurations, R is the orthogonal tensor, which converts the reference basis of the rigid mov-

ing coordinate system into the current (rotating tensor of the MCS from the reference to actual configu-

ration), 
eF  – the deformation gradient, which transforms the plastically deformed configuration, which 

has experienced the quasi-rigid motion, into the actual configuration. It should be noted that determining 

the relationship between the MCS motion and the continuum (orthogonal transformation R at any time) 

and the initial orientation of the MCS for the continuum that does not have an internal structure is diffi-

cult, moreover, it has many possible solutions. 

It is known that polycrystalline materials, in particular, metals, consist of separate crystallites with a 

certain structure. For a single crystallite, inelastic deformations realized by the motion of dislocations 

do not lead to the rotation of the crystal lattice [2, 3]. In the case of a polycrystalline material, the actual 

plastic deformations of each individual crystallite, realized by yields along crystal slip systems (SS), 

also do not lead to rotate of lattice. For the polycrystalline, it is possible to introduce a “generalized 

crystal lattice” (GL), which characterizes the average (by representative volume) symmetry properties 

of the material. Thus, the plastic deformation of a polycrystalline, described by the plastic component 

Fp determined by the plastic deformations of crystallites of the representative volume. It is assumed, that 

Fp (by analogy with the crystallites) not to turn the “generalized crystal lattice” of the representative 

volume element (RVE). The MCS is associated with the introduced “generalized lattice” of the repre-

sentative volume element. The MCS is responsible for the quasi-rigid motion of the representative vol-

ume element. As a result, relation (2) represents the movement of the polycrystalline by the sequence of 

plastic deformation, described by the plastic component Fp, carried out without distortion and rotation 

of the “generalized lattice” (in other words, it is assumed that during plastic deformation the material 

“flows” through the “generalized lattice”, leaving the latter invariant), and the affine transformation of 

Fe, which includes the rotation of R and the distortion of this lattice, described by 
eF . 

We note that the “generalized lattice” is experiencing both rotation and distortion, which are collec-

tively described by the elastic component of the position gradient Fe (1), while the MCS is experiencing 

only rotation (the translation  motion of the MCS do not lead to a change of basis, and therefore are not 

considered further). The decomposition 
e e= �F F R  differs significantly from the classical polar decom-

position, since 
eF  is not symmetric in the general case and is calculated after the determination of the 

quasi-rigid motion of the MCS. By analogy with the deformation of single crystals [2], when determin-

ing the quasi-hard rotation, it is proposed to exclude purely plastic deformation. 

2.2. Additive decomposition of the strain rate measure in the current configuration 
The introduced multiplicative decomposition (2) is used to obtain the additive decomposition of the 

transposed gradient of total velocity in the current configuration: 

 
T 1 e e e 1 e p T e 1ˆ ,� � �� � � � � � � � � � � �L V F F L F Ω F F L FR R�  (3) 

where V – is velocity of continuum points, �̂� � the operator nabla in the current configuration, 

e e e 1 p p p 1,� �� � � �L F F L F F . From decomposition (2) it follows that 
eF reflects only elastic distortions 
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of the GL. In the case of large gradients of displacements and severe deformations of metals, the elastic 

distortions are small compared to the rotations R and the plastic deformations Fp. In this regard, 
eF is 

close to unity, and the unloaded configuration consists with current configuration. However, the rate eF  

cannot be neglected; it is comparable to the values of the other terms in the decomposition (3). The 

additive decomposition is introduced: 

 
e in ,� �Z Z Z  (4) 

where, based on [2], in p T e e e 1– ,  ,  �� � � � � �Z L Ω Z L Z F FR R  – are measures of velocities of 

complete, inelastic and elastic distortions, defined in terms of the actual (unloaded) configuration, Ω is 

the spin tensor of MCS tensor, Lp is the plastic component of the displacement velocity gradient, defined 

in terms of the reference configuration. 

Following [2], the defining relation is introduced: 

 CR ed / d – : .t� � � � �Σ Σ Σ Ω Ω Σ П Z  (5) 

where Σ is the Cauchy stress tensor, П i j k l
ijkl�П k k k k is a fourth-rank tensor of elastic properties, sym-

metric with respect to pairs of indices, whose components are constant in the MCS basis {ki}. 

 

3. The plastic flow theory based on asymmetric measures 
In this section, the constitutive equations of the plastic flow theory based on asymmetric strain and stress 

rate measures are introduced. The previously obtained additive decomposition of the strain rate measure 

into the elastic and inelastic components (4) is used. The deviators of stress and strain measures and 

their velocities are used to derive the equations of the plasticity theory. The deviators of the Cauchy 

stress tensor Σ and the velocity gradient of relative displacements Z are introduced: 

 
1 1 1

1

1 / 3I ( ) 1 / 3I ( ) 1 / 3I ( ) ,

1 / 3I ( ) ,

� �� � � � � � � � � � �
� � �

Z Z Z E L Ω L Ω E L Ω L E L Ω
Σ Σ Σ E

 (6) 

where E is the isotropic second rank tensor. 

As the intensities of measures, the classical expressions are used, extended for the asymmetric 

case: 

 

T

T

in inT

3 2 : ,

Z 2 3 : ,

λ 2 3 : dτ.

и

и

� �� �

� ��

� 	

Σ Σ

Z Z

Z Z

 (7) 

It should be noted that the scalar measures of stresses and the accumulated strain λ need further refine-

ment in the case of severe deformations in order to correctly introduce the single curve hypothesis. In 

numerous articles [4-6], there are experimental data indicating that it is impossible to introduce a single 

dependence Σи(λ) for all loading types without significant errors (up to 20%). 

As a basis for constructing the asymmetric plasticity theory, the associated law of flow is used [7]: 

 
in λ,

и

�
�
�
ΣZ  (8) 

where Σи=R(λ) during an active loading and R(λ) determines the single dependence of the intensity of 

the flow stresses on the accumulated plastic strain [7]. 

 

3.1. The derivation of the constitutive equation in the modified plastic flow theory 
To derive the constitutive equation connecting the stress and strain rates, we will follow the scheme 

outlined in [8]. The aim of the subsequent transformations is to determine the tensor of elastoplastic 

properties, which connects the measures of these rates. Using the yield criterion Σи=R(λ), we determine 

the change rate of λ during an active plastic deformation 
 �inT: 0� �Σ Z : 
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2Σ 2Σ 2 Σ

Σ 3 :
λ ,

λ 2 Σ λ

R R

R R

и

и и и

и
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� �

� � � �� � � � �
� �

� �
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� �
� �

Σ Σ
Σ Σ Σ Σ

Σ Σ

Σ ΣΣ Σ Σ Σ Σ Σ

Σ Σ

 (9) 

where �Σ is the total material derivative of the Cauchy stress tensor deviator. The elastic relation (5) 

determines the rate of the total stresses, and not their deviator part, relationship is needed: 

 

 � 
 �
 � 
 � 
 �


 � 
 �III I

1 3 : 1 3 :

: 1 3 : 1 3 ,j ji i

def

i j i j



 �� �� � � � � � �

� � � �

Σ Σ Σ E E Σ Σ E E Σ Σ

Σ e e e e e e e e Σ C C
 (10) 

where E= eiei is the isotropic tensor of the second rank, CI = EE, CIII= eiejejei are isotropic tensors of the 

fourth rank. From relations (8)-(10), the relationship between the rate of plastic strain and the stress rate 

is obtained: 

 

 � 
 �


 � 
 �

T T

λ λ

in

T

λ

2

T

λ

2

λ ,
Σ Σ R Σ Σ R

Σ R

3 : 3 :
:

2 Σ λ 2 λ

3 1 3 1
,

2 λ Σ λR2

и и и и

об

и и

и
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�

� �
�

� � � �

� �
�

Σ Σ Σ Σ Σ

Σ Σ

Σ Σ ΣZ P

Σ ΣP
 (11) 

where P is the fourth rank tensor, which completely determines the inelastic properties of the material 

when the flow stress is reached with active loading; this tensor includes the tensor product of the stress 

tensor Σ´/Σи  on itself and the value of the instantaneous hardening modulus Rλ(λ). 

The rate of elastic deformations is expressed from the elastic relation (5): 

 
e 1 CR: .��Z П Σ  (12) 

Considering the additivity of strain rates (4) and the expressions for the component strain rates (11), 

(12): 

 1 CR : ,:�� � �Z PП Σ Σ  (13) 

whence, using the expression for the corotational derivative (5), the total rate of change of stresses from 

the point of view of a fixed observer in the laboratory coordinate system (LCS) is expressed: 

 


 �

 � 
 �
 �
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1

1 Ω

III I

1 Ω 1

III I

,: :

: : ,

,

1 3 :

: : 1 3 :

�

�

� �
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� �

� �

� �
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П Σ Σ Ω Ω Σ Σ

П Σ Σ C C Σ

П Σ П

Z P

Z P

Z ΣP C C

 (14) 

where the designation of the term 
def

� � � � �Σ Σ Ω Ω Σ  characterizing the geometric nonlinearity is intro-

duced. From the relation (14), the final expression for the stress rate with active loading is obtained, i.e. 

when the imaging stress point is found on the yield surface and the condition 
inT: 0� �Σ Z  [9] is fulfilled: 

 

 �
 � 
 �


 �

1
1 1 Ω

III I

inTby conditional: 

: 1 3 : : ,

Σ λ ,  : 0. Rи

�� ���

� �

��Σ П C C Σ

Σ Z

P Z П
 (15) 

In the case of elastic deformation, when the stress vector is located inside the yield surface, the plastic 

deformations are identically zero, then the connection between the stress rate and the total strain rate is 

performed in the following form: 

 
 �

 �

CR e

inT

: : ,

Σ λby conditional:   R

by conditional:  

.

Σ λ ,  R . : 0

и

и

� �

�

� �

Σ П Z П Z

Σ Z

 (16) 

The final set of relations of the geometrically non-linear plastic flow theory is: 
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3.2. On quasi-solid motion 
It should be noted that the main problem in the construction of the proposed model is the determination 

of the value of the spin tensor Ω of MCS of representative volume element of the material at any time. 

As a solution of this problem, it is proposed to rely on the introduction of a generalized lattice of repre-

sentative volume element, in which the MCS is rigidly associated with one direction and the plane of 

the generalized lattice. However, this does not take into account the orientation of the axes of symmetry 

at the reference configuration (the basis GL is assumed to coincide with the LCS), as well as at an 

arbitrary moment of process. It is obvious that the symmetry properties of the representative volume of 

the polycrystalline are determined by the law of distribution of orientations (changing in the process of 

deformation) in the current configuration and by the symmetry properties and orientations of its indi-

vidual elements, i.e., crystallites. At the current stage of development of a modification of the PFT 

model, it is proposed an alternative method for determining the MCS spin tensor, assuming the use of 

the two-level crystal plasticity model [3]. The developing approach [10] is used to determine symmetry 

properties of the representative volume element. This approach makes it possible to determine compli-

ance with the selected classes of symmetry of the representative volume element of the polycrystalline 

at any time during the process of arbitrary treatment. However, if at the initial moment the polycrystal-

line does not possess anisotropy of elastic properties, for which it is not possible to select character 

directions, the MCS is chosen to coincide with the LCS. In the future, it is planned to develop a macro-

model to describe the evolution of symmetry properties. For identifying and verifying the parameters of 

the macromodel the two-level crystal plasticity model will used. The advantage of this approach is bind-

ing to the symmetry elements of the material rather than the objects induced by the loading kinematics, 

e.g., the polar decomposition [11] or the skew-symmetric part of the velocity gradient [12, 13], where 

the PCS is associated with the eigenvectors of certain strain measures that are not related to the material. 

The widely used logarithmic spin [14] allows to avoid the dissipation of the elastic energy on closed 

cycles (in the elastic region), as well as stress oscillations. However, the derivation of the logarithmic 

spin is based on the assumption of elastic isotropy, and thus it cannot be associated with the symmetric 

elements of the material. An approach, which is the most similar to the proposed one, is described in 

[15, 16], where the concept of a reference generalized lattice with corresponding material vectors is 

introduced. The evolution of these vectors is determined by the elastic component of the velocity gradi-

ent, the definition of which in the framework of the symmetrized measures raises questions undiscussed 

in the cited articles. 

 
4. Conclusion 
In this work, the structure of the macro-phenomenological geometrically non-linear plastic flow theory 

based on asymmetric stress and strain measures is presented. By adopting the Mises-Hyber-Hencky 

yield criterion, the associated plasticity law and the anisotropic hypoelastic law, conclusive resolving 

equations are obtained for the change rate of stresses. The developed model of elastoplastic material 

will be further used in solving boundary-value problems corresponding to real technological processes. 
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