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Abstract. Eshelby’s inclusion with thermo-porous eigenstrain is a classical micromechanics 

problem, and may find wide applications in various engineering fields including mechanical 

transmission system, composite materials and geophysical structures. In this paper, the elastic 

field produced by thermo-porous spheroidal inclusion placed vertically near a free boundary 

surface is investigated. The current work complements our previous publication on the 

horizontally aligned spheroidal inclusion [Computers & Geosciences. 2019;122:15-24], and 

hence concludes that a complete elasticity solution with respect to the displacement, strain and 

stress can be obtained in closed-form. The elastic field of spheroidal inclusion due to thermal 

expansion is provided, and comparative study of inclusion due to fluid withdrawal leading to a 

decrease in pore pressure is discussed. The present half-space inclusion model can be used to 

determine the elastic fields of porous materials caused by produced by pore pressure 

fluctuation and temperature alteration. 

1. Introduction  

The Eshelby inclusion problem [1, 2] has broad applications in modern science and technology, as 

exemplified by the materials science and geophysical engineering [3]. However, a majority of the 

studies concern the inclusion in a full-space, whereas those on half-space problems are less reported in 

existing literatures due to mathematical complexity. Mindlin and Cheng [4] solved the spherical 

inclusion with uniform dilatational thermal expansion by utilizing the Galerkin vector stress function. 

Chiu [5] formulated the closed-form solution of uniformly distributed cuboidal inclusion by 

employing the method of images. Seo and Mura [6] studied the elastic stress field produced by a 

uniform thermal ellipsoidal inclusion in a semi-infinite space. The exterior solution of the inclusion 

problem is usually more intricate. Healy [7] and Manoylov et al. [8] respectively employed the 

spheroid-shaped inclusion model to solve the strain and stress fields of a penny-shaped crack, and the 

elastic properties of the porous material. Jin et al. [9] derived the displacement, deformation gradient, 

strain and stress Eshelby tensors and presented in a simpler and geometrically meaningful form. Lyu et 

al. [10] proposed analytical solutions for the complete elastic fields with respect to the displacements, 

strains, and stresses, produced by an ellipsoidal thermal inclusion in a half-space. 

Due to the involved derivatives of elliptic integrals of the first and second kinds as well as 

tremendous mathematical difficulties arisen from the effect of the free boundary surface, the existing 
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analytical solutions to half-space inclusion problems are usually lengthier and hence difficult for 

engineering applications. In a companion paper [11], the closed-form solution for horizontally aligned 

spheroidal inclusion subjected to the thermo-porous eigenstrain near free surface is obtained. 

Following this line of work, we present a complete elasticity solution corresponding to the 

displacement, strain and stress for the vertical alignment case. The current solution complements our 

previous publication on the horizontally placed spheroidal inclusion with thermo-porous eigenstrain 

[11] and concludes that a complete elasticity solution can be analytically presented in closed-form. In 

addition, several illustrating examples are provided to validate the present solution. 

2. Formulation 

2.1. Thermo-porous eigenstrain 

Eigenstrain is the stress-free transform strain which encompasses a wide range of nonelastic strains 

including plastic strain, misfit strain and lattice mismatch, etc. As typical applications in geophysical 

engineering, the thermoelastic and poroelastic eigenstrains are employed to characterize the 

temperature change and pore pressure fluctuation, respectively. For an isotropic thermo-poroelastic 

medium, the eigenstrain, *

ij , of poroelastic and thermoelastic couplings may be written as [11] 

 
 

* 1 2

2 1
ij ij B ij TP T


    

 


   


   (1) 

where the change of pore pressure and temperature are denoted by P  and T , and  ,   are the 

shear modulus and Poisson's ratio. Kronecker’s delta, 
ij , is defined as 1 if i j  and 0 if i j . 

Moreover, Boit pore-pressure coefficient is denoted by B , and coefficient of thermal expansion, T , 

is used to describe the tendency of matter to change in shape, area, and volume in response to a change 

in temperature. 

2.2. Thermo-porous ellipsoidal inclusion in a half-space 

Consider a semi-infinite matrix (Figure. 1) containing a thermo-porous ellipsoidal inclusion,  , 

which is bounded by  

 
 

 
22 2

31 2
32 2 2

1 2 3

1
x cx x

c x
a a a


       (2) 

where  1,2,3Ia I   is the semi-axis of the ellipsoidal inclusion, c represents the depth of the inclusion. 

It is noted that the boundary surface  3 0x   is free from any external force. The uniform thermo-

porous eigenstrain (Eq. (1)), is prescribed in   and vanished in the remainder of the matrix. (i.e. 
* * * *

11 22 33       and * * *

12 13 23 0     ). 

 

Figure 1. An ellipsoidal inclusion in a half-space. 
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The exterior displacement solution of the thermo-porous ellipsoidal inclusion in a semi-infinite 

space may be analytically presented as 

  
     

     

* * * *
*

3 123 3 3

* *

3

21

1 3 4 2

i I i i I

i

i I i I I

x x n n
u

x x

    

    

       
  

       

x
I I

I I
   (3) 

for i=1, 2 

  
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x
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  (4) 

for i=3, and *,     are the maximum positive root of cubic equations with respect to the imaginary and 

imaginary confocal ellipsoids. The function II , *

123 and unit normal vectors *,  i in n  are omitted here 

due to length, and interested readers are referred to [10, 11]. 

The exterior strain solution may be expressed as 

  
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  (5) 

for i=1, 2, 3, and terms ,  ij ijM N  are 

 

  
 

* ** * * *

3 31 1 2 2
* * * 2 * 2 * 2 *

3 3* 1 2 3

*

2 * 2 * 2 *

3

1 41 4 1 4

2 2 2

i j

ij

I J

n nn n n n

x n n n a a a
M

H

a a a

  



  

  
  

   
 
       

  (6) 
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According to Hooke’s law, the exterior stress solution may also be determined in an explicit form 
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2.3. In the case of spheroidal inclusion 

By setting 1 2 3a a a   and 3 1/a a  ,   for the spheroidal inclusion is thus derived explicitly as 
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and the corresponding 3I  function is 

 

  
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 3 3
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

 


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for oblate spheroid  1  , and 

  
 
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2
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for prolate spheroid  1  . Moreover, quantities in Eqs. (10) and (11) are 
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 


 


 
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 
  (12) 

The elastic field caused by a thermo-porous spheroidal ellipsoidal inclusion near free surface may 

be analytically obtained. The displacement solution for the exterior field is 
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x
I
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  (15) 

The corresponding exterior strain and stress solutions can be derived in closed-form through Eqs. 

(5)and (8). The detail formulation is omitted here due to length. 

3. Results and discussions  

The stress field of a thermal spheroidal inclusion in a half-space was reported by Seo and Mura [6]. In 

this section, the elastic fields corresponding to the displacement, strain and stress for the thermo-

porous inclusion near free surface is carried out with 210GPaE   and 0.3  . The stress 

distributions for the spheroidal inclusion with thermal eigenstrain may serve as a benchmark example 

to validate the present solution. 

For the spheroidal inclusion ( 1 2 33 3a a a  ) centered at ( 30,  0,  a ) subjected to thermal eigenstrain, 

the displacements along the 1x -direction are plotted in Figure. 2. The displacement components are 

normalized by 0 1Tu Ta  . It can be seen from Figure. 2 that the displacements are continuous across 
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the interface between the inclusion and surrounding matrix. The displacement 1u  represents tension 

both inside and outside the inclusion, while 3u  shows compression. 

The strain distributions along the 
1x -direction are illustrated in Figure. 3. The strain components 

are normalized by 0 T T   , and the strains in the interior field are no longer constant due to the 

existence of the free surface, as opposed to the case of full-space [9]. 

 

 

 

 

Figure 2. Displacements of a thermal spheroidal 

inclusion 

 Figure 3. Strains of a thermal spheroidal 

inclusion 

 

The stresses are normalized by  0 / 1TE T     , and the variations along the 1x -direction are 

shown in Figure. 4. The normal stress components 22 33 and    suffer discontinuities across the 

interface, and become almost zero for 1 3/ 7x a  .  

 

 

 

 

Figure 4. Stresses of a thermal spheroidal 

inclusion 

 Figure 5. Displacements of a spheroidal 

inclusion subjected to the porous eigenstrain in 

a half-space 

 

The results of the elastic field for the spheroidal inclusion subjected to the porous eigenstrain are 

studied, where the size of porous inclusion and depth location are identical to the case of thermal 

inclusion. In this work, all the displacement, strain and stress components are normalized respectively 

by  0 11 2 /Bu P Ea     ,  0 1 2 /B P E       and 0 B P    . The corresponding elasticity 
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solution with respect to the displacements, strains and stresses along the 1x -direction are illustrated in 

Figures. 5-7 in sequence. It is noted that the prescribed thermal eigenstrain is caused by temperature 

change resulting in a localized heating, while the porous eigenstrain is produced by fluid migration 

leading to a decrease in pore pressure. 

 

 

 

 

Figure 6. Strains of a spheroidal inclusion with 

porous eigenstrain near the surface 

 Figure 7. Stresses of a porous spheroidal 

inclusion in a semi-infinitely extended matrix 

4. Concluding remarks 

The current work investigates the solution of the complete elastic field for a spheroidal inclusion with 

thermo-porous eigenstrain vertically placed in a half-space. This complements our previous 

publication [11] on the horizontally aligned thermo-porous spheroidal inclusion in a half-space. The 

elastic fields for both the prolate and oblate spheroidal inclusions are derived based on the degenerate 

case of ellipsoidal inclusion near free surface. The present formulation of the displacements, strains 

and stresses are presented in closed-form, for convenience of engineering applications. 

Jump conditions are discussed to interpret that the discontinuities are only depending on the terms 

without superscript “*”. The effects of geometry for both oblate and prolate spheroidal inclusions are 

examined in response to the alteration of eigenstrains which include the thermal eigenstrain due to 

localized heating and porous eigenstran caused by fluid withdrawal leading to a decrease in pore 

pressure. It is demonstrated that the proposed inclusion model can be employed to predict the elastic 

fields of porous materials produced by thermal and porous eigenstains near a free surface. 
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