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Abstract. As the main transmission device in mechanical equipment, the shaft plays an 

important role in the function realization and stable operation of the machine, but it is 

particularly prone to failure due to the long-term alternating or random axial load, bending 

moment and torsion, so it is of great significance to find the crack on the shaft in its early state, 

to reduce economic losses and prevent catastrophic accidents. The vibration characteristics of 

the circular cross-section shaft with multiple cracks are studied, and a damage detection 

method is proposed. Based on the basic beam theory and the local compliance theory, the stress 

intensity factors(SIFs) for the cracked shaft subjected to axial force, shear force and bending 

moment are derived, and the evaluation of corresponding compliance coefficient is given. The 

differential equation of motion is discussed. Results indicate that the derived stress intensity 

factor is in good agreement with the experimental results. As the shaft has cracks, the mode 

shape will show discontinuous at the crack location. This method can identify the crack 

position, depth and the number of cracks. 

1. Introduction  

Shaft is one of the common components which is widely used in a dynamic machine. It plays an 

important role in the realization of function and stable operation of dynamic machine. Therefore, the 

reliability of shaft is very significant to the machine. Due to the environment of vibration and repeated 

force, cracks are often initiated in a shaft, making the machine work unstable and reducing the strength 

of the shaft. Especially when the shaft works in a resonant environment, the crack will be propagated 

rapidly which may lead some accidents. To guarante the safety reliability of the shaft, it is of great 

significance to find the crack position and crack size in the shaft in its early state. Numerous studies 

have been done about the identification method of crack. Zhong et al. proposed a novel non-projection 

vision-based system, the purpose of this system is to realize simultaneous measurement of the radial 

and axial displacements with high accuracy and good reliability by using a tailored artificial constant 

density sinusoidal fringe pattern. Results indicated that this method was an effective and accurate 

technique for real-time vibration monitoring of rotating shaft[1]. Zhang et al. studied damage detection 

method of a beam based on the coherence function of random vibration. Results indicated that this 

method can be used to detect single-crack and multi-crack of the cantilever beam accurately and 

reliably[2]
. Gounaris et al. simulated the cracks using local flexibility theory, and established a finite 

element model of the cracked beam, and analyzed the dynamic response of a cantilever beam under 

harmonic excitation. Results indicated that the modal frequencies and modal shape are greatly affected 
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by the presence of medium cracks[3]. An sandwich panel with some cracks was used  as the object by 

Zhang et al. to study three identification methods of cracks. Results shown that the crack location can 

be accurately identified according to the diffrence of vibration shape[4]. A simple and effective 

identification algorithm of crack damage before a break occurs was employed by Cruz-Vega et al. to 

identify several levels of crack of a rotor bar under different load conditions[5]. A vector due to 

measured values of vibration response  of the rotor was used to establish the system matrix by Ratan et 

al., results indicated that this method can even detect and locate cracks smaller than 4% of the 

diameter of the shaft[6]. Hwang detected the location and the size of crack damage by minimizing the 

differences between trials and analysis of FRFs[7]. Yang et al. studied the effects of open crack on the 

vibration characteristics of elastic beams[8]. Steady-state response study displayed  that the combined 

frequency and longitudinal response of the rotational and torsional excitations in the lateral response 

are reversed. The frequency of excitation can be used to detect the oblique cracks in shaft of the rotor 

system[9]. Bovsunovsky et al. studied a simple procedure to evalute the effectiveness of vibration 

diagnostics of damage. The procedure is based on the determination of the change of shaft's 

compliance caused by a crack via the use of linear fracture mechanics[10].  

Although many works about crack detection method for shaft have been done by the researchers in 

the past few decades. However, most of the works only consider single crack in the model, the 

influence of the neutral axis on the stress intensity factor are seldom considered. In this article, the 

model of SIFs is derived based on the elastic beam theory, and the local compliance model is also 

established. An identification method of multiple cracks in  shaft is discussed in the end. 

2. Calculation of SIFs 

The cracked shaft model is shown in Figure 1. The radius of the shaft is assumed to be ‘R’ and the 

crack depth are ‘a1’and ‘a2’. The shaft is subjected to the shear forces  ‘S1’ and  ‘S2’ bending 

moments  ‘M1’ and  ‘M2’, and axial tensile forces  ‘N1’and ‘N2’. 
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Figure 1. Cracked shaft model 

 

When the crack grows, strain energy concentration occurs in the vicinity of the crack tip, the 

energy release due to crack propagation will cause structural compliance changes. It is assumed that 

the structural crack region is in the elastic phase. Based on the linear elastic fracture mechanics theory, 

the strain energy release rate is defined as the strain energy dissipated during increase the crack 

surface area. 

                                                                   

A

U
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


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                                                                               (1) 

The strain energy release rate due to crack growth can also be expressed as 

                                              )1(
1 222

' ⅢⅡⅠ ）（ KvKK
E

G                                                    (2) 

where E' is elastic modulus,  E' = E/(1-v2) for plane strain,   E'=E for plane stress. According to the 

beam theory, a shaft subjected to a bending moment M, the strain energy due to b  is      
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where U denotes the strain energy required for crack expansion. When Δb→0  
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Assuming that the bending stiffness of the fracture section is ‘EIc’and the bending stiffness of the 

uncracked section is ‘EI’. Therefore the strain energy due to crack growth is expressed as  

                                       b
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The strain energy take the following form when it is subjected to a axial tension or shear 
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where A is the uncracked cross-section area of the shaft, ‘Ac’is the area of the cracked cross section, 

and u is the shear modulus. According to the method proposed by Kienzler and Herrmann[11]. The 

energy release rate aU  / due to crack growth is related to that one due to crack widening bU  /  can 

be expressed as 
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where Ra 2/ is crack ratio, Subsituting (4),(5),(6) into (9), we obtain 
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where EE /''   and  is the slope of the stress diffusion lines. We first consider the shaft subjected 

to a tension. The position of the neutral axis changes because of  the presence of cracks. The offset 

distance is 
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Then, a combined tension and bending moment occurs 
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Similarly, when the shaft is subjected to a bending moments, we obtain 
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When the shaft is subjected to a shear, its stress intensity factor is 
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3. Local compliance of the cracked shaft 

According to the Castigliano’s theorem, if strain energy is expressed as a function related to the force, 

and then the strain energy can be divided into the displacement ui in the direction of the force with 

respect to the forces as follows 
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where Qi is the force direction of the displacement ui. The compliance coefficients of the shaft 

subjected to the axial tensile, bending moment and the shear force is given as 
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Substituting equations (9), (10) and (11) into equation (23), the conpliance coefficents can be 

computed as 
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where  

                                                                    222 2  RzyRb                                                       (27) 

Therefore, the compliance matrix of nodal point is determined as 

                                                                     



















3313

22

1311

0

00

0

c

cc

c

cc

                                                             (28) 

therefore 

                                                                              
1 cK f                                                                  (29) 
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           Figure 2. Compliance coefficients 
 

Figure 2 displays the effects of the cracks on compliance coefficients. Results show that the 

compliance coefficient increases with the increasing of the crack depth. And the local flexibility 

coefficient is the largest when the shaft is subjected to the bending moment, and that is minimum one 

when subjected to shear to the same crack form of the shaft. When an uncracked shaft element 

subjected to a bending moment M, a shear force S and a axial tensile N at the same time, the strain 

energy is 
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Figure 3. First four bending modes for shafts 

 

According to the equation (30), the stiffness matrix of the uncracked element can be expressed as  
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Assuming that  the cracked section is modeled as two planes joined together by a line-spring with 

zero length. Therefore, the dynamic equation of the cracked shaft can be expressed as                    

                                                             0)(
..

 xKKxM f
                                                               (32) 
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where M is the mass matrix of the system, K is the stiffness matrix.The problem of determining the 

natural vibration frequencies and the associated mode shapes of a system is transformed into solving 

the eigenproblem of the homogeneous linear system, such as 

                                                                       02  AMK ）（                                                                      (33) 

4. Results and discussion 

The geometry and material properties of the cracked shaft is shown in Table 1. 

 

Table 1. Basic Parameters of shaft 

Basic Parameters value 

Young’s modulus E 210Gpa 

Poisson’s ratio v 0.33 

Mass density ρ 7900kg/m3 

Diameter d 0.1m 

Length L 1m 

 

Assuming that the boundary conditions of the shaft are simply supported on both end. Crack 

position  is set as x1/L=0.3. Shafts having two cracks, the crack positions are set as x1/L=0.3, x2/L=0.7 

or x2/L=0.9. And the crack depth is set as η=0.2, 0.4 and 0.6.  

Figure 3 shows the first four bending modes of the shaft with single crack and double cracks 

respectively. When a crack is in the shaft, the vibration mode changes, a discontinuity occurs at the 

crack position. Comparing these curves in Figure 3, it can be found that the mode shape appears 

discontinuous at the 0.3. With the increasing of modal frequencies, discontinuous interval increases 

too. When the crack position is at 0.3 and 0.7, the vibration mode appears discontinuous at these two 

positions. When the position of the first crack remains unchanged, and the location of the second crack 

is changed to the position at 0.9. Discontinuous appear at the position of 0.3 and 0.9, it shows that this 

character not only can be used to identify the location of cracks, but also can be used to identify the 

number of cracks. It is noted that with the increaseing of the crack depth, discontinuity also become 

larger. This is helpful to find the crack and crack depth. However, it is also found that this 

phenomenon is not obvious when the cracks are located close to the nodal position. 

5. Conclusion 
With the help of theoretical calculations, an identification method of cracks in a shaft is discussed. The main 

conclusions are as follows 

 Based on the fracture mechanics and basic beam theory, the stress intensity factors of a shaft 

subjected to axial tension, bending moment and shear force are derived. The local compliance 

model of the transverse crack shaft is calculated by using the Castigliano’s theorem and the 

expressions of local compliance of the cracked shaft are given.  

 The vibration modal shapes of the cracked shaft are calculated by the differential equation of 

motion. The variation of the vibration mode of a shaft having different crack locations and 

crack numbers are discussed. The model established in this paper is very convenient for the 

damage identification of the shaft. 
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