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Abstract. The solution of the elastic field for inclusions in an elastic half space has been 

applied widely in many contact analyses and engineering designs. A popular method to solve 

the half-space inclusion problem resorts to the method of images, where the solution is 

decomposed into 3 components consisting of the full space inclusion, mirrored inclusion, and 

the surface traction cancellation. In the process of cancelling the redundant surface tractions 

determined from a full space inclusion problem, the computation domain is supposed to be 

limited in a finite size and there is inevitably truncation error. It has not been quantitatively 

investigated how the truncation error will influence the accuracy of the numerical computations 

based on the method of images. This work studies the deflection of the boundary surface of a 

half-space containing an Eshelby inclusion. Errors due to mesh refinement and domain 

truncation are quantitatively analyzed. Parametric studies are performed for a systematic 

examination of surface redundant tractions and their influences. 

1. Introduction  

The inclusion problem provides a unified treatment for a variety of subjects and has been regarded as 

being of fundamental importance to many research branches in material science. The solutions for the 

half-space inclusions usually tend to be more intricate and complex, and the derivation for this 

problem may be laborious and time-consuming. The general problem of arbitrarily shaped inclusion in 

half space usually solved by the method of images which is straightforward and effective.  

Eshelby [1] first solved the problem of the interior elastic field of an ellipsoidal inclusion subjected 

to uniform eigenstrain in an infinite space in 1957. However, the exterior elastic field is much more 

complicated. The explicit complete solutions of an ellipsoidal inclusion in full space was analytically 

proposed by Jin et al [2]. Chiu [3] solved the displacement gradient due to cuboidal inclusion with 

uniform eigenstrains in a full elastic space, and further [4] proposed a strategy for solving the 

inclusion in a semi-infinite space via the method of images. In practical engineering design, the 

inclusions might be any arbitrary shape and distributed in a random manner. Zhou et al. [5] proposed a 

fast numerical method to solve 3D arbitrarily shaped inclusions in half-space. Liu et al [6] derived a 

set of explicit formulas in terms of the Galerkin vectors for the displacements and stresses in half 

space and ingeniously proposed the Fast Fourier Transform (FFT) techniques combining convolution 

and correlations for numerical computations of the half-space inclusion problem. Their half-space 

solutions to the cuboidal inclusion subjected in uniform eigenstrains are exact and represented in 

closed-form, and therefore could be used as the elementary solution for solving arbitrarily shaped 
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inclusion by breaking up the inclusion domain into multiple cuboids. Further, Zhou et al [7] proposed 

a mesh differential refinement scheme for solving elastic fields of half-space inclusion problems.  

This paper intends to examine the numerical error issues in determining the surface deflection 

caused by distribution of eigenstrains (or inclusion) in a half space using the method of images [4]. 

The method of images is often adopted for solving a half-space inclusion problem, which is 

constructed by cancelling the redundant surface tractions determined from a full space inclusion 

problem. However, truncation errors would inevitably appear in the numerical implementation, 

particularly when an inclusion is located close to the surface of the half space. Several benchmark 

examples are provided to demonstrate the effects on the surface displacement for a variety of relevant 

parameters. 

2. Formulation 

2.1. Method of images 

Consider an isotropic and homogeneous arbitrarily shaped inclusion embedded in an elastic semi-

infinite space which is defined by 3 0x   Chiu [4] proposed that, the solution of inclusion in a semi-

infinite space may be obtained by utilizing the method of images. According to the superposition 

principle, an isotropic inclusion in a semi-infinite space may be decomposed into three components 

(figure 1): (1) and (2) are the original and the mirror inclusions with specified eigenstrains in the full 

space respectively, and (3) is the solution of normal stress distributed on the free surface of semi-

infinite space.  

 

Figure 1. Decomposition of the half-space solution into three components. 

 

By the Voigt notation [8], the prescribed eigenstrain uniformly distributed in the inclusion of 

domain (1) may be written as  

 * * * * * * *

11 22 33 23 13 12,  ,  ,  2 ,  2 ,  2
T

ij             (1) 

The resulting displacement at an arbitrary field point in the inclusion of domain (1) may be 

represented in a matrix form as follows 
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where 
ijkw  denote the influence coefficients of the original inclusion in full space. Moreover, the 

symmetric inclusion of domain (2) is subjected to a mirror eigenstrainIt is worthwhile to note that the 

eigenstrain 

 * * * * * * *

11 22 33 23 13 12,  ,  ,  2 ,  2 ,  2
T

ij              (3) 

After the summation of the first two solutions, the normal stress on the symmetry plane 3 0x   is 

twice and the symmetry plane is free of shear tractions. Besides, the normal displacement along the 

surface cancels. According to the method of Images [4], the traction-free condition at the boundary 

surface is obtained by superimposing the solution for a half space under normal plane stress 33  

which is opposite to the resultant stresses after superposing problems (1) and (2) in figure 1. 

In view of the superposition of three components, the displacement of an arbitrary shaped inclusion 

in half space may be expressed as 

            1 2* *

1 2 3 30i ikl kl ikl kl iu w d w d p  
 

           
1  2

x x x x x x x   (4) 

where  3i x x  is the response function, also termed as the influence coefficient [8], of elemental 

normal contact force uniformly distributed on the rectangular patch, and 30p  is a normal stress whose 

magnitude is evaluated at the centre of the rectangle. 

2.2. Love’s rectangular contact solution  

In abovementioned equation, Solutions (1) and (2) (figure 1) have been determined in closed-form, 

whose details can be found in [6]. The solution (3) is solved numerically by discretizing the 

computational domain into a number of rectangular patches at the symmetry plane. The elastic field 

produced by a uniform rectangular patch loading is solved by employing Love’s rectangular contact 

solution, which has been comprehensively discussed and recorded by an effective notation in 

conjunction with the FFT algorithm [9]. 

 

 

Figure 2. Discretization of the computation domain using a uniform rectangular mesh. 

 

Consider a loaded area S of the symmetry surface as a computational domain which is discretized 

by 1 2N N  uniform rectangular meshes with each sides of length 1  and 2  (figure 2). Each grid 

point labelled by [i, j] is placed at the centre of the elements and assumed to be subjected uniform 

stress whose magnitude is evaluated at the centre of the rectangle. The indices i and j refer to the 

columns and rows of each grid, respectively. All of the grid points are denoted by gI   

  1 2[ , ]:   1 ,   1gI i j i N j N       (5) 
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The surface displacement of single element could be written in matrix form as follows 
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3 31 32 33 30
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
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  (6) 

where 0 , ( 1,2,3)jp j   is the magnitude of the uniform stress acting on the centre of the rectangle 

along the 
jx  axis; and 

ij  is termed as the elementary influence coefficient which relate the stress to 

the surface displacement at the surface point. 

The computational domain in problem (3) (cf. figure 1) is numerically discretized by rectangular 

patches, each of which is assumed to be subjected uniform normal stress 30p  .The surface 

displacement could be solved by superposing contributions of each element. For example, the surface 

deflection at grid point [i, j] may be written as 

 
1 2

, [ , ][ , ]

3

1 1

33 30 ,   [ , ]
N N

i j

g

k

k l k

l

i j lu ip j I  

 

    (7) 

As a result, the solution (3) can be solved by discretizing the computational domain into a number 

of rectangular patches and superposing contributions of each element. 

3. Results and discussions  

A benchmark example of a cuboidal inclusion is given in this section to explore the effects on the 

surface redundant traction and the surface displacement for different depth, shape and meshes. The 

related parameters for the baseline case in the computation are listed in table 1. The different results 

can be compared to each other by considering that the parameters for the baseline case are common 

between all examples of simulations.  

 

Table 1. Parameters of matrix and the cuboidal inclusion for the baseline case. 

Parameters Values 

Young’s modulus, E (GPa) 210 

Poisson’s ratio, ν 0.3 

Eigenstrain components * 3
0 0 0=10 1 1 1

T



         

side length  1,  1,  1a b c     

Distance to the Surface 1s    

 

The variation of relative surface redundant traction and surface displacement are calculated along 

the 1x  axis for different depth in dimensionless form, as depicted in figures. 3 and 4 respectively. It 

clearly shows that the effect of the inclusion on the stress field is decreasing when the cube is located 

deeper below the surface. It can be noted that when the cube is located at 2s a  , the stress field tends 

to be uniform and the redundant traction and the displacement on the surface is not distinct. This 

means that once the inclusion is far away from the surface, the value of its depth play a negligible role 

in determining the redundant surface traction and surface deflection. Moreover, when the value of 

/s a  is close to zero, the redundant traction on the surface above the cube is almost a constant except 

at the boundary edges.  

The comparison of the surface redundant traction and the surface displacement along the 1x axis for 

different value of /b a  and /c a  is shown in figures. 5 and 6 respectively. It can be observed that 
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both the redundant traction and the displacement on the surface are reduced with the decreasing of the 

cuboidal size. Moreover, comparing the figures of the surface displacement for different shapes, it can 

be concluded that the effect of c on the surface displacement is concentrated inside, and the influence 

of b  is scattered.  

 

 

 

Figure 3. Variation of dimensionless surface 

redundant traction along the 1x  axis for 

different depth. 

 
Figure 4. Variation of dimensionless surface 

displacement along the 1x  axis for different 

depth. 

 

In the computation, the domain is discretized into 251 251  grids for the baseline case. Next, the 

computational domain is magnified in order to investigate the effects of the size of the computational 

domain. The variation of relative dimensionless surface displacement along the 1x  axis with different 

value of magnification NFCTX  is shown in figure 7. It should be noted that the resulting 

displacement show noticeable discrepancy from the exact solution without magnifying the size of the 

computational domain, but it tends to agree with the exact solution with magnification 3NFCTX  . 

Further increase of the magnification factor NFCTX  would distinctly the occupied more 

computational time but shows no distinct influence (figure 7). Accordingly, there is no necessary to 

further enlarge the magnification factor. Therefore, in order to improve the accuracy of calculation, the 

size of the computational domain must be extended to some degree. 

 

 

 

 

(a) 
 

(b) 
 

Figure 5. Comparison of dimensionless surface redundant traction along the 1x axis for different 

shapes: (a) /b a change; (b) /c a change. 
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(a) 
 

(b) 
 

Figure 6. Comparison of dimensionless surface displacement along the 1x axis for different shapes: 

(a) /b a change; (b) /c a change. 

 

Figure 7. Variation of dimensionless surface displacement along the 1x  axis for different meshes.  

4. Conclusions 

The elastic field of an inclusion in a half space with eigenstrain is often complex and intricate because 

of the mathematical difficulties arisen from the effect of the free surface. Notwithstanding, the current 

work demonstrates that the stress field of an arbitrarily shaped inclusion in a half space can be solved 

by the method of images. The Voigt notation and the Eshelby tensor were utilized for simplifying the 

numerical computation and computer programming. A number of interesting parametric studies are 

provided in this paper in order to explore their effects on the surface displacement. It is shown that the 

surface displacement of the inclusion is much closer to the exact solution by magnifying the size of the 

computational domain. Numerical computations for half-space problems always require a large 

computational domain to guarantee its accuracy. 
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