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Abstract. Rotating beams are extensively used in different mechanical and aeronautical 

installations. In this paper, a systematic approach is presented in order to solve the eigenvalues 

problem through the Timoshenko beam theory. The equations of motion are deduced by using 

the Hamiltonian approach. These equations are then solved by the differential transform 

method (DTM). The obtained numerical results using DTM are compared with the exact 

solution. Natural frequencies are determined, and the effects of the rotational speed and axial 

force on the natural frequencies are investigated. Results show high accuracy and efficiency of 

the differential transform method. 

1. Introduction 

Rotating structures can be found in turning machinery systems such as motors, engines, and turbines. 

The bending vibrations analysis of the beams aroused considerable interest for the engineers. The 

natural frequencies and mode shapes of such systems are indispensable in the design of structures. Zu 

and Han [1] analytically solved the free flexural vibration of a spinning Timoshenko beam with 

classical boundary conditions. Zhang [2] studied the free vibration of axially loaded shear beam 

column and obtained a very simple frequency equation to utilize for axially loaded beam as well as to 

obtain the buckling loads by setting the natural frequencies to disappear. 

Farchaly and Shebl [3] determined two sets of exact general frequency and mode shape equations 

to study the vibration and stability of a Timoshenko beam that carries an end masses of finite length. 

Lee [4] enclosed the constant axial force and found that it had a considerable effect on the magnitude 

of the dynamic response. Ouyang [5] established a dynamic model for a rotating Timoshenko beam 

subjected to three force components acting on the surface. The deflection of the beam examined and 

found it had proportional increases with respect to the deflection and the frequency components when 

the axial force component is included.  

The effect of such parameters such as moving velocity, the skew force angle, and the rotating speed 

on the system dynamic response is investigated by utilizing the global assumes mode method by 

considering boundary conditions [6]. The dynamic green function is used to introduce the free 

vibration of elastically supported Timoshenko beam on a partly Winkler foundation [7]. The finite 

element method is used the investigate the behaviour of the natural frequencies and to determine the 

influence of the rotating speed profile on the vibration of the cantilevered beam based on the dynamic 

modelling method by using the stretch deformation [8]. 
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Among different types of numerical techniques, finite element method, the finite difference 

approach, the Galerkin method, etc. In the present study, the differential transform method is used. 

The proposition of the concept of the differential transform method was presented for the first time by 

Zhou [9] in 1986 when the problems of linearity and no-linearity that involved the electrical circuit 

problems had been solved.  

2. Governing equation of motion  

Figure 1 shows a uniform beam of the circular cross-section , in an inertial coordinate system  

subjected to axial force  along the -axis 

 

 

Figure 1. Cantilevered beam geometry. 

 

The governing differential equations of motion as well as the boundary conditions can be derived 

through Hamilton’s principle which can be stated as follows: 

  (1)

  (2)

Where is the variational operator and L is the Lagrangian of the model. T and U1 are the kinetic 

energy and the potential energy respectively of the Timoshenko beam adapted from reference [10]. 

  (3)

  (4)

is the potential energy caused by the work of the axial load according to the Engesser 

approach [11] given by the following equation: 

  (5) 

Where  are the deflections of the rotating beam in the  directions respectively, and the 

angular rotations around y and axes by and .  is the cross-section area of the beam, and  is 

the moment of the area. 
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Where is the radius of the beam is the mass density of the beam material. and are Young's 

modulus and shear modulus respectively, and is the shear coefficient. and denote the shear 

strain expressed in (6) and (7). 

  (6)

  

By introducing the following non-dimensional variables and parameters:  

,  

    

And presuming that the beam incurs harmonic motion: 

   

The differential equations of motion are obtained after integration, and its dimensionless form are 

as follows: 

  

   

As well as the associated boundary conditions: 

  

  

3. Differential transform method  

The differential transform method (DTM) is a semi analytical-numerical method that is suitable for 

solving initial and/or boundary value problems and can provide highly accurate results with small 

computational effort. [12, 13] The DTM has gained the attention of many researchers recently. 

Let be an analytic function in a domain D and let represent any point in domain D; 

therefore, the differential transform of is given by [14]: 

  

Where is the transformed function in the transformation domain, is the original 

function and  is the transformation parameter. The inverse transformation is defined as:  

  

Combining equations (13) and (14), we obtain: 

   

In the real case, the number of series is limited to N and equation (16) can be written as follows: 
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  

Where the number N is defined according to the convergence criterion. The basic theorems of the 

differential transform are listed in Table 1 [14]. 

 

Table 1. Formatting sections, subsections and subsubsections. 

Original function Transformed function 

   

    

    

  
  

     

4. Application of the DTM  

The following recursive expressions are determined by applying DTM to equations (10) and (11) 

using theorems listed in Table 2. 

  

  

Applying DTM to equations (12) and (13), the boundary conditions are as follows: 

At : 

  

At : 

  

  

  

For any and with are expressed regarding the first two terms in function of , 

and . By inserting the terms of and into the boundary conditions in (21) and (23) the 

system of equations obtained will be as follows: 

    

Where  are polynomials of ω corresponding to   term. The equation (24) can 
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  

The natural frequencies are obtained by equating the characteristic equation of the determinant of 

the equation (25). 
 

Table 2. DTM theorems for boundary conditions 

        

Original BC Transformed BC  Original BC Transformed BC 

        

  
  

  
  

  
  

  
  

5. Numerical results and discussion 

For the determination of the natural frequencies a for a cantilevered beam, a computer package Matlab 

is used. In order to validate the computed results, an associate illustrative example taken from [3] is 

solved and also the results are compared with those within the same reference paper. 

The results for cantilevered beam are tabulated in Table 3 for different values of Ρ. The results 

demonstrate the effect of the parameter of the axial force on the natural frequency. A good agreement 

up to the third digit in the first mode and up to the first digit in the second mode are shown between 

the present study and that mentioned in reference [3]. The found results show a decrease of the natural 

non-dimensional frequencies parameter by the increasing of the non-dimensional of the axial force 

parameter  . 

 

Table 3. Variation of the natural non-dimensional frequencies for a cantilever beam for 

various values of P concerning (r2=0.01 and s2=3r2). 

 First mode Second mode 

  Present  Ref.[3] Present Ref.[3] 

0 1.799 1.799 3.819 3.820 

1 1.579 1.579 3.708 3.715 

10 - - 2.333 2.199 

 

The results presented in Table 4 show the effect of the rotational speed  on the 

fundamental natural frequencies of the beam concerning the material and geometric properties of the 

beam are:  By raising the rotational speed 

gives rise to all natural frequencies ω which occurs as a result of the increase of the centrifugal tension 

force. 
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Table 4. Variation of the fundamental natural frequency of a rotating Timoshenko beam for 

various of rotational speed Ω. 

   mode  mode  mode  mode 

0 6.121 12.998 15.89 17.012 

50 6.159 13.073 15.898 17.173 

100 6.197 13.147 15.91 17.330 

150 6.235 13.221 15.925 17.486 

200 6.272 13.295 15.942 17.639 

250 6.309 13.369 15.894 17.792 

300 6.346 13.443 15.979 17.944 

 

Figure 2 gives the variation of the natural frequencies as a function of the variation of the speed of 

rotation. The influence of the speed of rotation on the natural frequencies of the beam is illustrated as 

can be seen from the Figure 2. We notice that for each speed of rotation, there are two frequencies, 

there are increasing values according to the speed of rotation called modes in direct precession, and 

other decreasing ones called retrograde modes. The gyroscopic effect causes this phenomenon. Indeed, 

we also notice that there is a proportional variation between the speed of rotation and the natural 

frequencies caused by the centrifugal stiffening 

 

 

Figure 2. Whirl speed map of the rotating beam. 

6. Conclusion. 

In this paper, the natural frequencies of a non-rotating and rotating cantilevered Timoshenko beam are 

studied by using the DTM. The effects of the axial force and rotational speed on the natural 

frequencies are investigated. A good agreement is observed through a comparison of the DTM results 

and exact solutions from the reference [3] mentioned above. 
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