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Abstract. In this work a nonlinear dynamic and mathematic model for the position control of a 

hydraulic actuator with internal leakage was developed, simulations were made and a basic 

PID control in order to check the actuator behaviour. An internal leakage emulator was 

installed bypassing the two chambers of the hydraulic cylinder. Time and position data were 

acquired via Quanser Q8-USB and saved for modelling and validation purposes, sinusoidal and 

square signals and both for four fault conditions. Data were classified through MATLAB 

Simulink algorithm having in consideration parity equations and residual generation, obtaining 

a high level of validation for the proposed model and the desired responses and fault detection, 

diagnosis and classification. 

1. Introduction 

Hydraulic actuators are widely used in industrial applications due to their excellent power-size relation, 

their capacity to apply high forces indefinitely and their high response [1]. Hydraulic servo systems 

combine the advantages of hydraulic actuators with the versatility of electronics to give the most 

powerful actuators in modern industrial applications like robotics, aerospace industry, mining, testing 

equipment and production lines [2] [3]. 

 However, electrohydraulic actuators exhibit a highly and complex nonlinear dynamic performance 

[4] [5]. The main nonlinearities are due to compressibility of the hydraulic fluid, the flow-pressure 

relationship in the servo valve, friction forces and internal and external leakage in the actuator [6] [7]. 

In this work a nonlinear mathematic and dynamic model was first developed having in consideration 

the internal leakages through the two chambers of the hydraulic actuator. Experimental validation was 

made in Dynamics and Structural Control Lab at Universidad Industrial de Santander in order to check 

the accuracy of the dynamic model. Fault detection was made with the residual generated between the 

two models and fault classification and diagnosis was carried out with features extraction having in 

consideration the residual and internal leakage flow in order to create boundaries to successfully 

classify the case studies. 

2. Nonlinear Dynamic Model 

The schematic representation of the system under consideration is shown in figure 1. The hydraulic 

actuator is double rod and is commanded by a servo valve. The objective is tracking precisely a 

specified displacement trajectory. 
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Figure 1. Hydraulic system schematic. 

2.1. Actuator Analysis 

The motion dynamics of the mass of the actuator is obtained applying Newton’s second law: 

 

                      𝑚𝑥̈𝑝 = 𝐴𝑝𝑃𝐿 − 𝑏𝑥̇𝑝 − 𝑘𝑥𝑝                                         (1) 

 

where 𝑚, 𝑏 and 𝑘 are the mass, the viscous damping coefficient and the mass stiffness. 𝑥𝑝   is the 

actuator’s displacement, 𝐴𝑝   the effective annular piston area and 𝑃𝐿  the load pressure, defined as 

𝑃𝐿  =  𝑃1  − 𝑃2.The actuator’s dynamics is obtained by applying the continuity principle: 

 

                          𝑄𝐿 = 𝐴𝑝𝑥̇𝑝 +
𝑉𝑡

4𝛽
𝑃̇𝐿                                                     (2) 

 

where 𝛽 is the effective bulk modulus, 𝑉𝑡 the total fluid volume trapped in the actuator’s chambers and 

system’s pipes, 𝑄𝑙𝑒𝑎𝑘 is the leakage flow between the two chambers and 𝑄𝐿  is the flow supplied by 

the servo valve to move the load, defined as. 

 

   𝑄𝐿  = 𝑄𝐿𝑒𝑎𝑘 +
𝑄1 + 𝑄2

2
                                                  (3) 

2.2. Servo valve Analysis 

The flow supplied by the servo valve is related with the spool displacement by the following equation, 

assuming that the orifices are symmetric: 

   

   𝑄𝐿 = 𝐶𝑑𝑤𝑥𝑣√
𝑃𝑆−𝑃𝐿

𝜌
                                                    (4) 
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where 𝐶𝑑  is the discharge coefficient through the orifice, 𝑤 is the area gradient of the orifice, 𝑥𝑣  is 

the spool displacement, 𝑃𝑆 is the supply pressure y 𝜌 is the hydraulic fluid density. The relationship 

between control voltage and spool displacement is obtained: 

 

                           𝑢 =
1

𝑘𝑣
𝑥𝑣       (5) 

 

      𝑥𝑣 = 𝑢𝑘𝑒𝑣                                                                      (6) 

 

where 𝑘𝑣 is the gain of the servo valve, and 𝑢 the control voltage. 

 

Combining equations, flow equation remains: 

 

  𝑄𝐿 = 𝑢𝑘𝑣𝐶𝑑𝑤√
𝑃𝑆−𝑃𝐿

𝜌
         (7) 

2.3. Nonlinear Dynamic Model Without Fault  

Using equations 1, 2, 3, 4, 5 and assuming that 𝑄𝐿𝑒𝑎𝑘 = 0, the nonlinear dynamic model without fault 

are constructed as follows: 

    

𝑥̈𝑝 =
1

𝑚
[𝐴𝑝𝑃𝐿 − 𝑏𝑥̇𝑝 − 𝑘𝑥𝑝]                                                  (8) 

    

𝑃̇𝐿 =
4𝛽

𝑉𝑡
[𝑢𝑘𝑣𝐶𝑑𝜔√

𝑃𝑆−𝑃𝐿

𝜌
   − 𝐴𝑝𝑥̇𝑝]     (9) 

 

The nonlinear plant without fault is built using these nonlinear equations 8 and 9 and is shown in 

Figure 2. The input to the plant is the servo valve voltage 𝑢 and the output is the actuator’s position 𝑥𝑝 

which completes the feedback look of the system. 

 

 

Figure 2. Nonlinear model subplant without fault modelled in Simulink. 

 

2.4. Nonlinear Dynamic Model Without Fault  

Using equations 1, 2, 3, 4, 5 and having in consideration the internal leakage inside the actuator, the 

nonlinear dynamic model with fault are constructed as follows: 
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  𝑃̇𝐿 =
4𝛽

𝑉𝑡
[𝑄𝐿 − 𝑄𝑙𝑒𝑎𝑘 − 𝐴𝑝𝑥̇𝑝]                                                      (10) 

 

O According to Sepehri [8], the internal leakage flow can be model as: 

    

𝑄𝑙𝑒𝑎𝑘 = 𝐶𝑙𝑒𝑎𝑘𝑤𝑙𝑒𝑎𝑘√
2𝑃𝐿

𝜌
       (11) 

 

where 𝐶𝑙𝑒𝑎𝑘   is the flow through a hole coefficient and 𝐶𝑙𝑒𝑎𝑘  is the leakage area. Through 

mathematical operations, the main equations are: 

 

𝑥̈𝑝 =
1

𝑚
[𝐴𝑝𝑃𝐿 − 𝑏𝑥̇𝑝 − 𝑘𝑥𝑝]                                          (12) 

 

    

𝑃̇𝐿 =
4𝛽

𝑉𝑡
[𝑢𝑘𝑣𝐶𝑑𝜔√

𝑃𝑆−𝑃𝐿

𝜌
   −𝐶𝑙𝑒𝑎𝑘𝑤𝑙𝑒𝑎𝑘√

2𝑃𝐿

𝜌
 − 𝐴𝑝𝑥̇𝑝]     (13) 

 

 

The nonlinear plant with fault is built using the equations 12 and 13 and is shown in Figure 3. The 

input to the plant is the servo valve voltage 𝑢  and the output is the actuator’s position 𝑥𝑝  which 

completes the feedback look of the system. 

 

 

Figure 3. Nonlinear model subplant with fault modelled in Simulink. 

 

3. Simulation 

The simulations of the position of the hydraulic actuator were carried out using two types of signal 

inputs: sine and square wave. For both signals the position set-point was 0.15 [m], which is the half of 

the actuator’s stroke. 
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Simulations were made through computerized software (MATLAB and Simulink). Faulty and 

nonfaulty models were analysed and compared using parity equations in order to generate a residual 

for fault detection, evaluation and classification. 

3.1. Normal system simulation  

In this case, the Simulink nonlinear dynamic model without fault shown in Figure 2 are used. The 

physical values and constants were used from a Karpenko and Sepehri [8] research and are listed in 

Table 1 in order to verify the model behaviour, but in this case, 𝑤𝑙𝑒𝑎𝑘 = 0 

3.2. Faulty system simulation  

In this case, the Simulink nonlinear dynamic model with fault shown in Figure 3 are used. The 

physical values and constants were used from a Karpenko and Sepehri [8] research and are listed in 

Table 1 in order to verify the model behaviour. In this case, 𝑤𝑙𝑒𝑎𝑘 = 5𝑒−7 𝑚𝑚2

𝑚𝑚
 so that the fault can be 

noticed. 

3.3. Systems comparison 

For fault detection and diagnosis, is important to compare the system behaviour in both scenarios. This 

simulation integrates the two previous models in which flow and position data were compared to 

generate a residual that is essential for a correct fault detection and diagnosis 

The position error or residual are generated by the following equation and Simulink block model 

were made and represented in Figure 4: 

  

𝑟′(𝑠)  =  [𝐺𝑃(𝑠) −  𝐺𝑀(𝑠)]𝑢(𝑠)      (14) 

 

Table 1. Constants and physical values for modelling without fault. 

Parameter Symbol Nominal Value Units 

Supply pressure Ps 17,2 𝑀𝑝𝑎 

Total mass of piston, rods and load m 12 𝐾𝑔 

Viscous damping coefficient b 1000 
𝑁 𝑠

𝑚
 

Load spring constant k 75 
𝑘𝑁

𝑚
 

Piston annulus area A 633 𝑚𝑚2 

Cylinder volume V 468 𝑚𝑚3 

Leakage orifice coefficient of discharge Cleak 0,7 -- 

Leakage orifice area Wleak 5e-07 
𝑚𝑚2

𝑚𝑚
 

Hydraulic fluid density ρ 847 
𝐾𝑔

𝑚3
 

Effective bulk modulus Bu 689 𝑀𝑝𝑎 

Servo valve coefficient of discharge Cd 0,6 -- 

Servo valve orifice area gradient w 20,75 
𝑚𝑚2

𝑚𝑚
 

Servo valve spool position gain Kev 0,0406 
𝑚𝑚

𝑉
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Figure 4. Simulink blocks model comparing the faulty and nonfaulty 

model for residual generation. 

 

Figure 5 shows the position of both models with a sine signal as input, and the residual generated 

having in consideration the equation 14. 

 

 

Figure 5. Residual obtained from the faulty and nonfaulty model comparison for sine 

wave input. 

 

In both cases, the fault is noticeable, the hydraulic actuator can’t reach the set point and presents a 

delay with the input signal. The residual shows a disturbance and error between the two signals and 

shows an evident fault. 

4. Experimental Model Validation 

The validation was done in the hydraulic uniaxial seismic shake table of the Dynamics and Structural 

Control Lab at Universidad Industrial de Santander (shown in Figure 7). The seismic table consists of 

a Parker hydraulic cylinder, a MOOG 76-263 servo valve, Quanser Q8 USB data acquisition and MTS 
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hydraulic unit and complementary equipment to carry out the assembly of the hydraulic uniaxial 

seismic shake table shown in Figure 6. 

 

 

Figure 6. Schematic of hydraulic and electric assembly used to set up the hydraulic 

uniaxial seismic shake unit and achieve the experimental data acquisition. 

 

Figure 7. Experimental assembly of the hydraulic uniaxial seismic shake table. 

4.1. Data acquisition  

Data acquisition were made in groups of five vectors, for a 4-inch amplitude and frequency of 0,1Hz, 

1Hz and 10Hz both for a square and sinusoidal input signal. The five vectors were averaged to reduce 

possible errors. 

4.2. Validation 

The MATLAB and Simulink nonlinear model was calibrated with the real parameters of the 

experimental assembly with the purpose of have a computational model which can simulate the real 

assembly with minimal error. These parameters are shown in the Table 2. 

 

 

 



2018 3rd International Conference on Reliability Engineering

IOP Conf. Series: Materials Science and Engineering 575 (2019) 012014

IOP Publishing

doi:10.1088/1757-899X/575/1/012014

8

 

 

 

 

 

 

Table 2. Constants and physical values for modelling without fault. 

 

Parameter 

 

Symbol 

 

Nominal Value 

 

Units 

Mass M 85 𝐾𝑔 

Stroke Cc 0,1524 𝑚 

Active area Aa 1,62𝑒−3 𝑚2 

Total volume Vt Aa*Cc 𝑚3 

Supply pressure Ps 6,2𝑒6  𝑃𝑆𝐼 

 

For the validation, three different methods were used to confirm the accuracy of the simulation model 

developed. 

The Determination Coefficient: It makes several observations of the variable to be predicted and 

the variances of the residual and the dependent variable are related. 

 

  𝝆𝟐 = 1 −  
𝜎𝑟𝑒𝑠

𝜎𝑑𝑒𝑝
       (15) 

 

where 𝜎𝑟𝑒𝑠  is the residual variance and 𝜎𝑑𝑒𝑝  is the dependent variable variance, in this case the 

experimental data. 

The Correlation Coefficient: It is a measure that aims to quantify the degree of relationship and 

joint variation between two variables, is a statistical measure that quantifies the linear dependence 

between two variables. 

 

 

𝑹 =
𝐶𝑜𝑣(𝑜𝑏𝑠,𝑚𝑜𝑑)

𝑆𝑡𝑑(𝑜𝑏𝑠)∗𝑆𝑡𝑑(𝑚𝑜𝑑)
              (16) 

 

 

where 𝐶𝑜𝑣(𝑜𝑏𝑠, 𝑚𝑜𝑑) is the covariance between the model and experimental data, 𝑆𝑡𝑑(𝑜𝑏𝑠) is the 

standard deviation of experimental data and 𝑆𝑡𝑑(𝑚𝑜𝑑)   the standard deviation of the model data.  

The Coefficient of Correlation of Concordance: It throws the degree of reproducibility between 

the data measured in the test bench and the outputs generated by the model. 

 

   

𝑪𝑪𝑪 =  
𝐴2+𝐵2−𝐶2

𝐴2+𝐵2+𝐷2       (17) 

 

 

where A and B are the simulation variances and measure data, C is the residual variance and D the 

average difference between measures.  

The absolute error of this case is 0,845%, 𝝆𝟐 coefficient is 99,94%, 𝑹 coefficient is 99,97 and 𝑪𝑪𝑪 

coefficient 99,96%. That indicates that the computational model for this case of study describes 

satisfactorily the real behaviour of the experimental assembly with very small errors. 

5. Fault Detection and Classification 

Internal leakage was simulated through a needle valve in bypass between the two chambers. The 

position data were taken in groups of five vectors and for four cases of valve opening (0%, 33,33%, 

66,66% and 100%) for a 4-inch amplitude and frequency of 0,1Hz, 1Hz and 10Hz both for a square 

and sinusoidal input signal. The five vectors were averaged to reduce possible errors. 

Figure 8 shows the position of a 0,1Hz sine signal with the four cases of study (without fault, slight 

fault, medium fault and critical fault). 
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As expected, the previous image shows that the response of the system varies according to the 

opening level of the needle valve which, in this specific case, is simulating an internal leakage failure 

in the actuator. 

 

 

Figure 8. Position data simulation results for 0.1Hz sine wave input with four internal 

leakage scenarios. 

 

5.1. Classification ranges 

According to Watton and Pham [9], A severe failure in the piston seal of a hydraulic cylinder can pass 

more than 30% of the flow intended by the servo valve for work. Therefore, it will become the point 

of reference to generate the fault classification ranges. 

Using the simulation previously validated with the sample taken, the percentage of opening of the 

simulated needle valve was manually set so that it would pass 30% of the work flow, as Watton 

suggests, the system flows are shown in Figure 9. 

 

 

Figure 9. System flows simulation results for 0.1Hz sine wave input when internal 

leakage is greater than 30% of the work flow. 
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In addition, the points were searched where 20% and 10% of the flow are lost respectively to classify 

in three fault levels. Repeating this procedure for the different configurations and having in 

consideration the fault ranges, Table 3 shows the different flow constants calculated for every scenario. 

Table 3. Cleak coefficient for different fault scenarios 

 

Fault 

 

 

QLeak 0.1 Hz Sqr 
0.1 Hz 

Sin 
1 Hz Sqr 1 Hz Sin 

10 Hz 

Sqr 

10 Hz 

Sin 

Normal 0 0,1 0,015 0,001 0,001 0,001 0,001 

Slight 10% 0,25 0,15 0,35 0,3 0,25 0,12 

Medium 20% 0,5 0,35 0,8 0,6 0,7 0,23 

Critical 30% 0,85 0,6 1,2 0,9 0,85 0,35 

Super 50% 1,4 1,35 2,5 1,9 1,3 0,65 

5.2. Fault classification 

Considering the classification ranges, a feature extraction of the position signal (Mean, RMS and 

Standard Deviation) was carried out to improve the accuracy of the classification algorithm hence 

these values are significantly affected by internal leakage, frequency and type of the signal and they 

maintain intervals of considerable size, a clear tendency and they remain on the same quadrant. 

Fault detection and classification algorithm analyse the residual between the two signals, and 

compare the flow and features extracted in order to cluster and locate each signal in a classification 

range generating an output message or alert.  

Figure 10 shows how far the cylinder stroke is influenced under the presence of a fault that causes a 

loss of flow in the piston, from values lower than 10% to 30% and supercritical of 50%.  

 

 

 

Figure 10. Position simulation results in four fault scenarios (0%, 10%, 20%,30% and 

50% of internal leakage) for 0.1Hz sine wave. 

 

Figure 11 shows how the flows behave, according to the simulation, during the test, you can see 

how the flow sent by the servo valve must be increasing to compensate the loss, but also the work flow 

is reduced with the increase of the loss flow. 
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Figure 11. Flows data simulation results for 0.1Hz sine wave input with three internal 

leakage fault scenarios (10%, 20% and 30% of internal leakage). 

 

Table 4 shows the Leakage coefficient, the flows and the features extracted with the limit values 

for the clustering and diagnosis. 

 

Table 4. Parameters for fault clustering 

 

Fault 

 

C Leak Q Servo [L/m] Q Leak [L/m] Mean RMS Std 

Normal 0,015 1,9148 0,0018 0,0215 0,0269 0,0162 

Slight 0,15 2,0887 0,2044 0,0508 0,0554 0,022 

Medium 0,35 2,3151 0,4709 0,1171 0,1263 0,0472 

Critical 0,6 2,5484 0,7797 0,2015 0,2163 0,0788 

Super 1,35 3,319 1,6704 0,4186 0,4525 0,172 

 

Having in consideration Table 4, the data previously acquired were passed through the MATLAB 

fault detection and diagnosis algorithm which process de data and classify successfully all the cases of 

study (0,1Hz, 1Hz and 10Hz for sine and square wave)   

6. Conclusions 

 In this work the non-linear dynamic and mathematical model of a hydraulic seismic shake table 

with and without internal leakage through the two chambers of the actuator was developed. 

 Simulations were carried out for sine and square wave as input signal with frequencies of 0,1Hz, 

1Hz and 10Hz and validated with experimental data, having correlation coefficients higher than 96% 

and errors lower than 1%. Fault detection were developed through parity equations and residual 

analysis of the system. 
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 Three classification ranges were stablished: Slight fault (0-10% leakage flow) medium fault (10%-

20% leakage flow) critical fault (20%-30% leakage flow) and super critical fault (higher than 30% 

of leakage flow) having in consideration as a several failures the internal leakage higher than 30%. 

 Fault diagnosis and classification was realized through MATLAB algorithm which extract 

important features of the signal and clusters in the four classification ranges for each case of study 

with 94,4% of accuracy. 

7. Observations 

Future work will include another fault detection and identification techniques as Artificial Neural 

Networks and Fault Tolerance. 
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