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Abstract. In this paper, we studied the resolution of Weyl module for characteristic zero in the 

case of partition (8,7,3) by using mapping Cone which enables us to get the results without 

depended on the resolution of Weyl module for characteristic free for the same partition. 

1.  Introduction  

Let R be a commutative ring with 1 and  is a free R-module and  be the divided power algebra of 

degree . 

        The resolution of partition  which represented by below diagram and in 

our case . 

 

        Authors in [1 - 6] discussed the resolution of Weyl module for characteristic free for the 

partitions (4,4,4), (3,3,2), (6,6,3), (6,5,3), (7,6,3) and (8,7,3), respectively. Haytham R.H. and Niran 

S.J in [7] exhibit the terms and the exactness of the Weyl resolution in the case of partition (8,7). As 

well in [8] they illustrate the terms of characteristic-free resolution and Lascoux resolution of the 

partition (8,7,3). 

        Buchsbaum D.A. and Rota G.C. in [9] define the Capelli identities as: 

        Let , then the divided powers of the place polarizations satisfy the following 

identities: 

(1) If , then 

  

  

(2) If  and  then  

mailto:haythamhassaan@uomustansiriyah.edu.iq
mailto:sabahniran@gmail.com


ICCEPS

IOP Conf. Series: Materials Science and Engineering 571 (2019) 012039

IOP Publishing

doi:10.1088/1757-899X/571/1/012039

2   

        In this work we survey the resolution of Weyl module for characteristic zero in the case of 

partition (8,7,3) by using mapping Cone without depending on the resolution of Weyl module for 

characteristic free for the same partition. 

 

2.  Characteristic-zero resolution of Weyl module with mapping Cone in the case of partition 

(8,7,3) 

      Before we study the resolution of Weyl module for characteristic-zero in isolation of characteristic-

free, we need the definition of mapping Cone we review that as in [10]  

        Consider the following commute diagram 

 

If the rows sequence are exact and  

n – 1: CnDn – 1    Cn + 1Dn   defined by 

(,b)  ( – dn(), (b) t+ fn())  such hat  n – 1 ∘ n  = 0;  n  ℤ+ 

Then the sequence 

Cn – 1    CnDn – 1    Cn + 1Dn    Cn + 2Dn + 1    …, 

is exact. 

 

        Consider the complex of Lascoux in our partition (8,7,3) as the following diagram: 

 



ICCEPS

IOP Conf. Series: Materials Science and Engineering 571 (2019) 012039

IOP Publishing

doi:10.1088/1757-899X/571/1/012039

3   

 

Diagram (2.1) 

Where      ;   

   ;   

  ;   

  ;     and 

   ;   

So we need to define   which make the diagram A commute, i.e   

   

From Capelli identities, we know that 

    and     

Then 

  

  

  

So we get   ;   
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        Now if we use the mapping Cone to the following diagram 

 

 

We get the subcomplex  

   (1) 

Where    and   

 

 

Proposition (2.1):  

         

Proof:  

 

  

  

 

But from Capelli identities we have 

    and     

Then 

 

                       = 0     ■ 

 

        By employing a mapping Cone again on the subcomplex (1) and the rest of diagram (2.1) we have 
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Diagram (2.2) 

 

Now we define  

                                    

                                                                    by      

                               

 

  

Proposition (2.2):  

        The diagram C in diagram (2.2) is commute. 

Proof:  

        To prove the diagram is commute it is sufficient to prove that  
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But from Capelli identities we have 

   and    

So we get 

 

  

  

    ■ 

 

 

        Hence from the mapping Cone, we have the following complex 

 

 

where 

  

  

 

Proposition (2.3):  

         

Proof:  

  ;   
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But from Capelli identities we have 

   ,   =    ,    

   and    

 

Which implies that 

 

  

 

= (0,0)    ■ 

 

Proposition (2.4):  

         

Proof:  

   

  

   

  

   

 

 

Again from Capelli identities we get 
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= 0    ■ 

        Finally, we present the following theorem which shows that the complex of Lascoux in the case of 

partition (8,7,3) is exact. 

 

Theorem (2.5):  

The complex 

 

 

Is exact. 

Proof:  

        Since the diagrams, A and B in a diagram (2.1) are commutes and each of the maps 

; where  ,  

and 

; where , 

are injective [9] and [11], then we have a commuting diagram with an exact row. But from proposition 

(2.1) we have  which implies that the mapping Cone conditions are satisfied and the 

complex 

 

Is exact. 
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        Now consider the diagram (2.2), since diagram C is commute and 

;  where   is 

injective [9] and [11], so we have diagram (2.2) commute with exact rows. But  

(proposition (2.3)) and  (proposition (2.4)) then again the mapping Cone conditions are 

satisfied, so the complex 

 

 

Is exact.    ■ 

 

Conclusions 

        By using mapping Cone we can find the resolution of Weyl module for characteristic zero in the 

case of partition (8,7,3) without depending on the resolution of Weyl module for characteristic free for 

the same partition. 
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