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Abstract. The main purpose of this paper is to study the spectrum of intuitionistic fuzzy 

semi d-ideal in d-algebra, and the relationship between the topological properties and the 

algebraic properties of the Spectrum of d-algebra X  with respecting to connectedness and 

separation axioms . 

1.  Introduction  

 
BCK-algebra is a classe of abstract algebras introduced by Y. Imai and K. Iseki [9,15] . A d-algebra is a useful 

generalization of BCK-algebra was introduced by J. Negger  and H. S. Kim [7]. J. Negger , Y. B. Jun  and H. S. 

Kim [8] discussed ideal theory in d-algebra. After the introduction of intuitionistic fuzzy set by Atanassov in 

1986 [10], there was a number of generalizations of this concept . This concept was generalizations for fuzzy set 

concept which was introduced by Zadeh in 1965 [11]. In [14] Y. B. Jun, J. Neggers and H. S. Kim apply the 

ideal theory in fuzzy d-ideals of d-algebras . H. K. Abdullah and A. K. Hasan introduce the notation of semi d-

ideal of d-algebra in [5]. Y. B. Jun , H. S. Kim and D.S. Yoo in [13] introduced the notion of intuitionistic fuzzy 

d-algebra. A. K. Hasan introduce the notion of intuitionistic fuzzy semi d-ideals of d-algebra in [1]  . Ali K. 

Hasan and Osamah A. Shaheed introduce the notion of intuitionistic fuzzy prime semi d-ideals of d-algebra in 

[2], and in this paper we study the spectrum of intuitionistic fuzzy semi d-ideal in d-algebra, and the relationship 

between the topological properties and the algebraic properties of the d-algebra X . Also we consider strongly 

connected and separated properties .  

2.  Background 

This section contains some basic about intuitionistic fuzzy set and the ordinary and intuitionistic fuzzy 

concepts about semi d-ideal and prime semi d-ideal in d-algebra, with some theorems and 

propositions. 
 

Definition (2.1) : [7] A d-algebra is any non-empty set X with a binary operation ∗ and a constant 0 

which satisfies that: 

I. a ∗ a = 0 

II. 0 ∗ a = 0 

III. If a ∗ b = b ∗ a = 0 then a = b ∀ a, b ∈ X.  

We will refer to a ∗ b  by  ab, and it is said to be commutative if  a(ab) = b(ba) for all  a, b ∈
X , and b(ba) is denoted by (a ∧ b).Every set X in the following is a d-algebra     

Definition (2.2) :[5] A semi d-ideal of a d-algebra X is a non empty subset J of  X satisfies i) a, b ∈ J  
imply ab ∈ J  ,  
ii) ab ∈ J and  b ∈ J imply a ∈ J ,  for all  a, b ∈ X     

Definition(2.3) : [4] In a commutative d-algebra X , a semi d-ideal I is said to be prime if  a ∧ b ∈ I 
implies a ∈ I or b ∈ I , for all  a, b ∈ X .  

Definition (2.4) [10] : An IFS " intuitionistic fuzzy set " A in a set X is an object having the form A =
{< a, αA(a), βA(a) >∶ a ∈ X} , such that αA: X → [0,1] and βA: X → [0,1] denoted the degree of 
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membership (namely αA(a)) and the degree of non membership (namely  βA(a)) for any elements a ∈
X to the set A, and 0 ≤ αA(a) + βA(a) ≤ 1,  for all a ∈ X.  To simplicity, we shall use A =<
αA, βA >  instead of A = {< a, αA(a), βA(a) >∶ a ∈ X}.  

Definition (2.5) : [3] Let X, Y be d-algebra and let  f: X → Y be a homomorphism mapping, and C be IFS 

in X we define IFS, f(C) in Y, by   

f(C)(y) =< αf(C)(b), βf(C)(b) > , where  αf(C)(b) =

{ sup αC(a)      a ∈ X, f(a) = b        if f −1(b) ≠ ∅
0                                                     otherwais                

  ,  and  

βf(C)(b) = {
inf βC(a)    a ∈ X, f(a) = b        if f −1(b) ≠ ∅

0                                                  otherwais  
  for each b ∈ Y .  

Definition (2.6) [6] : Let μ, v ∈ [0,1] such that μ + v ≤ 1. An intuitionistic fuzzy point x(μ,v) is defined 

to be an IFS in X, define by x(μ,v)(y) = {
(μ, v)   if y = x
(0,1)   if y ≠ x

 for all y in X, and x(μ,v) ∈ A if and only if α ≤

μA(x) and β ≥ vA(x).  

Notation (2.7): Let A be an IFS of a d-algebra X. We denote a level cut set A∗ by A∗ = {x ∈ X ∶
αA(x) = αA(0) , βA(x) = βA(0)} . 

 
Definition (2.8) [3] :  The IFS 0̃ and 1̃ in X are define as 0̃ = {〈x, 0,1〉, x ∈ X} and 1̃ = {〈x, 1,0〉, x ∈ X} , 

where 1 and 0  represent the constant maps sending every element of X to 1 and 0, respectively. 

Definition (2.9) [1] :An intuitionistic fuzzy semi d-ideal of X, "shortly IFSd − ideal" ,  is an IFS D =<
αD, βD > in  X satisfies the following inequalities :  

(IFSd1) αD(a) ≥ min {αD(ab), αD(b)}, (IFSd2) βD(a) ≤ max {βD(ab), βD(b)}  
(IFSd3) αD(ab) ≥ min {αD(a), αD(b)}, and (IFSd4) βD(ab) ≤ max {βD(a), βD(b)}, for all a, b ∈ X. 

Definition(2.10) [2] : An IFSd − ideal D =< αD, βD > of X is an intuitionistic fuzzy prime semi d-ideal 

" shortly IFPSd − ideal " in X if it is satisfies  (IFPSd1) αD(a ∧ b) ≤ max {αD(a), αD(b)}  

(IFPSd2) βD(a ∧ b) ≥ min {βD(a), βD(b)} ,  for all a, b ∈ X 

Theorem (2.11) [2] :  If D =< αD, βD > is an IFPSd − ideal, then the set A∗ = {a ∈ X: αD(a) = αD(0) 

and βD(a) = βD(0)} is a prime semi d-ideals.  

Definition (2.12):[2]  A non-constant  intuitionistic fuzzy ideal A of a d-algebra X is called an 

intuitionistic fuzzy maximal semi d-ideal if for any intuitionistic fuzzy semi d-ideal B of X, if A  B, 

then either B∗ = A∗  or  B∗ = X.  

Theorem (2.13) : [2] Let A is an intuitionistic fuzzy maximal semi d-ideal of a d-algebra X, then A∗ is a 

maximal semi d-ideal of X.  

Definition (2.14): [2]  Let A be an IFS of X. Then the least IFSd − ideal of X containing A is called the 

IFSd − ideal of X generated by A and is denoted by 〈A〉.  

3.   Topological spectrum  

 

 In this section we introduce the spectrum of d-algebra and we discuss the relationship 

between some algebraic and topological properties of d-algebra . 

Notation (3.1) :  

(i) 𝜒 = {𝑃, 𝑃 𝑖𝑠 𝐼𝐹𝑃𝑆𝑑 − 𝑖𝑑𝑒𝑎𝑙 𝑜𝑓 𝑋} 

(ii) 𝑉(𝐴) = {𝑃 ∈ 𝜒, 𝐴 ⊆ 𝑃, 𝑤ℎ𝑟𝑒𝑟 𝐴 𝑖𝑠 𝑎𝑛 𝐼𝐹𝑆𝑑 − 𝑖𝑑𝑒𝑎𝑙 𝑜𝑓 𝑋} . 

(iii)  𝜒(𝐴) = 𝜒 ∖ 𝑉(𝐴) the complement of 𝑉(𝐴) in 𝑋 , 𝜒(𝐴) = {𝑃 ∈ 𝜒, 𝐴 ⊈ 𝑃} . 

Lemma (3.2) : Let 𝐴 and 𝐵 be 𝐼𝐹𝑆𝑑 − 𝑖𝑑𝑒𝑎𝑙. If 𝐴 ⊆ 𝐵 , then 𝑉(𝐵) ⊆ 𝑉(𝐴) .  

proof : Let 𝑃 ∈ 𝑉(𝐵) that implies 𝐵 ⊆ 𝑃 , and so 𝐴 ⊆ 𝐵 ⊆ 𝑃 that mean 𝑃 ∈ 𝑉(𝐴) .  

proposition (3.3) : If 𝑃 is a smallest 𝐼𝐹𝑃𝑆𝑑 − 𝑖𝑑𝑒𝑎𝑙 containing 𝐴 , then 𝑉(𝐴) = 𝑉(𝑃) .  

proof : It is clear that 𝑉(𝑃) ⊆ 𝑉(𝐴)  by lemma (3.2) . Now let 𝑃1 ∈ 𝑉(𝐴) , so 𝐴 ⊆ 𝑃1 , but 𝑃 is a 

smallest 𝐼𝐹𝑃𝑆𝑑 − 𝑖𝑑𝑒𝑎𝑙 containing 𝐴 , so 𝑃 ⊆ 𝑃1 , then 𝑃1 ∈ 𝑉(𝐴) . Thus 𝑉(𝐴) = 𝑉(𝑃) .  

Proposition (3.4) : Let 𝐴 be an 𝐼𝐹𝑆𝑑 − 𝑖𝑑𝑒𝑎𝑙 , then 𝑉(〈𝐴〉) = 𝑉(𝐴) .  

proof : Let 𝑃 ∈ 𝑉(𝐴) that implies 𝐴 ⊆ 𝑃, and so 〈𝐴〉 ⊆ 𝑃. Hence 𝑃 ∈ 𝑉(〈𝐴〉) .  
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Conversely , let 𝑃 ∈ 𝑉(〈𝐴〉) , then 〈𝐴〉 ⊆ 𝑃 , note that so 𝐴 ⊆ 〈𝐴〉 ⊆ 𝑃, we get 𝑃 ∈ 𝑉(𝐴) . 

Therefore 𝑉(〈𝐴〉) = 𝑉(𝐴) . 

Proposition (3.5) : Let 𝐴 and 𝐵 be two 𝐼𝐹𝑆𝑑 − 𝑖𝑑𝑒𝑎𝑙 , then 𝑉(𝐴 ∪ 𝐵) ⊆ 𝑉(𝐴) ∪ 𝑉(𝐵)      

Proof :Since 𝐴 ⊆ 𝐴 ∪ 𝐵 and 𝐵 ⊆ 𝐴 ∪ 𝐵, so 𝑉(𝐴 ∪ 𝐵) ⊆ 𝑉(𝐴) and  𝑉(𝐴 ∪ 𝐵) ⊆ 𝑉(𝐵). Thus 𝑉(𝐴 ∪
𝐵) ⊆  𝑉(𝐴) ∪ 𝑉(𝐵).  

Definition (3.6) : For an 𝐼𝐹𝑃𝑆𝑑 − 𝑖𝑑𝑒𝑎𝑙 𝐴 of 𝑋 . The prime radical 𝑟𝑎𝑑(𝐴) of 𝐴 is the intersection of 

all  

𝐼𝐹𝑆𝑑 − 𝑖𝑑𝑒𝑎𝑙𝑠 of 𝑋 containing 𝐴 . In case there is no such 𝐼𝐹𝑆𝑃𝑑 − 𝑖𝑑𝑒𝑎𝑙 , then 𝑟𝑎𝑑(𝐴) = 1̃ .  

Proposition (3.7) : Let 𝐴 be an 𝐼𝐹𝑆𝑑 − 𝑖𝑑𝑒𝑎𝑙 , then  

i) 𝐴 ⊆ 𝑟𝑎𝑑(𝐴)  

ii) 𝑟𝑎𝑑(𝑟𝑎𝑑(𝐴)) = 𝑟𝑎𝑑(𝐴)   

iii) If 𝐴 𝐼𝐹𝑃𝑆𝑑 − 𝑖𝑑𝑒𝑎𝑙 , then 𝑟𝑎𝑑(𝐴) = 𝐴 

iv) If 𝐴 ⊆ 𝐵 , then 𝑟𝑎𝑑(𝐴) ⊆ 𝑟𝑎𝑑(𝐵)  

proof :  

i) It is clear that 𝐴 ⊆ ⋂{𝑃𝑖, 𝑃 ∈ 𝐴, ∀𝑖 ∈ Λ} .  

ii) We can easily show that ⋂{𝑃𝑖, 𝑟𝑎𝑑(𝐴) ⊆ 𝑃} = ⋂{𝑃𝑖, ⋂[𝑃𝑖́, 𝐴 ⊆ 𝑃́] , ⋂{𝑃𝑖́, 𝐴 ⊆ 𝑃́} ⊆ 𝑃} for all 𝑖 ∈ Λ 

, so 𝐴 ⊆ 𝑃, then 𝑟𝑎𝑑(𝑟𝑎𝑑(𝐴)) = 𝑟𝑎𝑑(𝐴) .  

iii) Since 𝐴 is an 𝐼𝐹𝑃𝑆𝑑 − 𝑖𝑑𝑒𝑎𝑙 , then ⋂ 𝑃𝑖 = 𝐴 for all 𝑖 ∈ Λ this mean 𝑟𝑎𝑑(𝐴) = 𝐴 . 

iv) It is clear . 

Proposition (3.8) : For any 𝐼𝐹𝑆𝑑 − 𝑖𝑑𝑒𝑎𝑙 𝐴 𝑎𝑛𝑑 𝐵 the following are hold  

i)  𝑉(𝐴) = 𝑉(𝑟𝑎𝑑(𝐴)) 

ii) 𝑉(𝐴) = 𝑉(𝐵) if and only if 𝑟𝑎𝑑(𝐴) = 𝑟𝑎𝑑(𝐵).  

proof :  

i) Since 𝐴 ⊆ 𝑟𝑎𝑑(𝐴), then 𝑉(𝑟𝑎𝑑(𝐴)) ⊆ 𝑉(𝐴). Now let 𝑃 ∈ 𝑉(𝐴), thus 𝐴 ⊆ 𝑃,  

so 𝑟𝑎𝑑(𝐴) = ⋂{𝑃𝑖́ ∈ 𝑆𝑝𝑒𝑐(𝑋): 𝐴 ⊆ 𝑃́}, this imply that 𝑟𝑎𝑑(𝐴) ⊆ 𝑃. Thus 𝑃 ∈ 𝑉(𝑟𝑎𝑑(𝐴)), then  

𝑉(𝐴) ⊆ 𝑉(𝑟𝑎𝑑(𝐴)) . Hence 𝑉(𝐴) = 𝑉(𝑟𝑎𝑑(𝐴)) .  

ii) It is clear  .  

proposition (3.9): If 𝑓 is a d-morphisim from 𝑋 to 𝑋́ , then 𝑓(𝑥(𝜇,𝑣)) = (𝑓(𝑥))(𝜇,𝑣), for all 𝑥 ∈ 𝑋 and 

for all 𝜇, 𝑣 ∈ (0, 1] such that 𝜇 + 𝑣 ≤ 1 .  

proof : Let 𝑦 ∈  𝑋́ be any element, then 𝑓(𝑥(𝜇,𝑣))(𝑦) = 〈𝛼𝑓(𝑥(𝜇,𝑣))(𝑦), 𝛽𝑓(𝑥(𝜇,𝑣))(𝑦)〉 , where   

𝛼𝑓(𝑥(𝜇,𝑣))(𝑦) = sup {𝛼𝑥(𝜇,𝑣)
(𝑝), 𝑓(𝑝) = 𝑦} = {

𝜇 ;     𝑖𝑓 𝑝 = 𝑥 , 𝑦 = 𝑓(𝑥)
0 ;                  𝑜𝑡ℎ𝑒𝑟𝑤𝑎𝑖𝑠𝑒      

= 𝛼(𝑓(𝑥))
(𝜇,𝑣)

(𝑦) , and   

𝛽𝑓(𝑥(𝜇,𝑣))(𝑦) = 𝑖𝑛𝑓 {𝛽𝑥(𝜇,𝑣)
(𝑝), 𝑓(𝑝) = 𝑦} = {

𝑣 ;     𝑖𝑓 𝑝 = 𝑥 , 𝑦 = 𝑓(𝑥)
0 ;                  𝑜𝑡ℎ𝑒𝑟𝑤𝑎𝑖𝑠𝑒      

= 𝛽(𝑓(𝑥))
(𝜇,𝑣)

(𝑦) .  

Hence  𝑓(𝑥(𝜇,𝑣)) = (𝑓(𝑥))(𝜇,𝑣) .  

Definition (3.10) : Let 𝐴 𝑎𝑛𝑑 𝐵  𝑎𝑟𝑒 𝐼𝐹𝑆 we will define 𝐴. 𝐵 = {< 𝑎, 𝛼𝐴.𝐵(𝑎), 𝛽𝐴.𝐵(𝑎) >∶ 𝑎 ∈ 𝑋} =<
𝛼𝐴. 𝛼𝐵, 𝛽𝐴. 𝛽𝐵 > 

Theorem (3.11) : Let 𝑇 = {𝜒(𝐴), 𝐴 𝑖𝑠 𝐼𝐹𝑆𝑑 − 𝑖𝑑𝑒𝑎𝑙 𝑖𝑛 𝑋}. Then 𝑇 is a topology on 𝜒 .  

proof : Since 𝑉(0̃) = 𝑋 and  𝑉(1̃) = ∅, so that 𝜒(0̃) = ∅ and 𝜒(1̃) = 𝑋, and that implies ∅, 𝑋 ∈ 𝑇. 

Next let 𝐴1 and 𝐴2  be any two 𝐼𝐹𝑆𝑑 − 𝑖𝑑𝑒𝑎𝑙. Then let 𝐵 ∈ 𝑉(𝐴1) ∪ 𝑉(𝐴2) that mean 𝐴1 ⊆ 𝐵 or 

𝐴2 ⊆ 𝐵 then 𝐴1 ∩ 𝐴2 ⊆ 𝐵 , so 𝐵 ∈ 𝑉(𝐴1 ∩ 𝐴2) , and if  

𝐵 ∈ 𝑉(𝐴1 ∩ 𝐴2) we get that 𝐴1 ∩ 𝐴2 ⊆ 𝐵 and that's mean 𝐴1. 𝐴2 ⊆ 𝐵 then 𝐴1 ⊆ 𝐵 or 𝐴2 ⊆ 𝐵 and 

thus 𝐵 ∈ 𝑉(𝐴1) ∪ 𝑉(𝐴2). Hence 𝑉(𝐴1) ∪ 𝑉(𝐴2) = 𝑉(𝐴1 ∩ 𝐴2) , so 𝜒(𝐴1) ∩ 𝜒(𝐴2) = 𝜒(𝐴1 ∩ 𝐴2), 



ICCEPS

IOP Conf. Series: Materials Science and Engineering 571 (2019) 012032

IOP Publishing

doi:10.1088/1757-899X/571/1/012032

4

 

 

 

 

 

 

and that mean 

 𝜒(𝐴1) ∩ 𝜒(𝐴2) = 𝜒(𝐴1 ∩ 𝐴2) . This show that 𝑇 closed under finite intersection .  

Finally, let {𝐴𝑖, 𝑖 ∈ Λ}  be any family of 𝐼𝐹𝑆𝑑 − 𝑖𝑑𝑒𝑎𝑙 of X it can be easily confirm that ∪
{𝑉(𝐴𝑖), 𝑖 ∈ Λ} = 𝑉(〈∪ {𝐴𝑖, 𝑖 ∈ Λ}〉) . In other words , ⋃ 𝜒(𝐴𝑖)𝑖∈Λ = 𝜒(〈⋃ 𝐴𝑖𝑖∈Λ 〉) . Hence 𝑇 is closed 

under arbitrary unions . Thus 𝑇 is a topology on 𝑋 . 

Remark (3.12) : The topological space (𝑋, 𝑇) defined in theorem (3.11) is called the intuitionistic 

fuzzy prime semi d-ideal spectrum of d-algebra and is denoted by 𝐼𝐹𝑃𝑆𝑑 − 𝑆𝑝𝑒𝑐(𝑋) or for 

convenience 𝜒 .  

Notations (3.13) :  

1- We will denoted for all 𝑥 ∉ ⋂{𝐽: 𝐽 𝑖𝑠 𝑝𝑟𝑖𝑚𝑒 𝑠𝑒𝑚𝑖 𝑑 − 𝑖𝑑𝑒𝑎𝑙 𝑖𝑛 𝑋} by 𝑥̃ , and for all 𝑥 ∈
⋂{𝐽: 𝐽 𝑖𝑠 𝑝𝑟𝑖𝑚𝑒 𝑠𝑒𝑚𝑖 𝑑 − 𝑖𝑑𝑒𝑎𝑙 𝑖𝑛 𝑋} by 𝑥 . 

2- Let 𝐴 be an 𝐼𝐹𝑆 of the 𝑋.  Put (𝐴) = {(𝛼0, 𝛽0), (𝛼1, 𝛽1), … … , (𝛼𝑛, 𝛽𝑛)}, where 𝛼𝑖 , 𝛽𝑖 ∈ [0,1] such 

that 𝛼𝑖 + 𝛽𝑖 ≤ 1 for all 𝑖 =  0,1, 2 … , 𝑛  .  

Theorem (3.14) : Let 𝑥, 𝑦 ∈ 𝑋 and 𝜇, 𝑣 ∈ [0, 1] such that 𝜇 + 𝑣 ≤ 1 , then 

i) 𝜒(𝑥(𝜇,𝑣)) ∩ 𝜒(𝑦(𝜇,𝑣)) = 𝜒(𝑥𝑦(𝜇,𝑣))  

ii) 𝜒(𝑥(𝜇,𝑣)) = ∅ if and only if 𝑥 is 𝑥 .  

iii) 𝜒(𝑥(𝜇,𝑣)) = 𝜒 if and only if is 𝑥 is 𝑥̃ in 𝑋.  

proof :  

i) If 𝑃 ∈ 𝜒(𝑥(𝜇,𝑣)) ∩ 𝜒(𝑦(𝜇,𝑣)), then 𝑃 ∈ 𝜒(𝑥(𝜇,𝑣)) and 𝑃 ∈ 𝜒(𝑦(𝜇,𝑣)), that means 𝑥(𝜇,𝑣) ⊈ 𝑃 and 

𝑦(𝜇,𝑣) ⊈ 𝑃, and that implies 𝛼𝑃(𝑥) < 𝜇, 𝛽𝑃(𝑥) > 𝑣  and 𝛼𝑃(𝑦) < 𝜇 , 𝛽𝑃(𝑦) > 𝑣 . Thus 𝜇 > 𝛼𝑃(𝑥) =

𝛼𝑃(𝑦) = 𝛼𝑃(𝑥𝑦), and 𝑣 < 𝛽𝑃(𝑥) = 𝛽𝑃(𝑦) = 𝛽𝑃(𝑥𝑦), since 𝑃∗ = {𝑥 ∈ 𝑋 ∶ 𝛼𝑃(𝑥) = 1 , 𝛽𝑃(𝑥) = 0} is 

a prime semi d-ideal of 𝑋 and ⋀(𝑃) = {(0,1), (𝜇, 𝑣)} implies that 𝛼𝑃(𝑎) = 𝛼𝑃(𝑏) and 𝛽𝑃(𝑎) = 𝛽𝑃(𝑏) 

for all 𝑎, 𝑏 ∈ 𝑋 ∖ 𝑃∗ and 𝑥, 𝑦, 𝑥𝑦 ∉ 𝑃∗. Then 𝑥𝑦(𝜇,𝑣) ⊈ 𝑃, which means that 𝑃 ∈ 𝜒(𝑥𝑦(𝜇,𝑣)). The proof 

of (i) is complete, since all the implication can be reversed.  

ii) Let 𝐽 be any prim semi d-ideal of d-algebra 𝑋 and let 𝑋𝐽 be the intuitionistic fuzzy characteristic 

function of 𝐽. It is follows that 𝑋𝐽 ∈ 𝑋. Next if 𝜒(𝑥(𝜇,𝑣)) = ∅ , then 𝑉(𝑥(𝜇,𝑣)) = 𝑋 , which implies that 

𝑥(𝜇,𝑣) ⊆ 𝑋𝐽, and therefore 𝛼𝑋𝐽
(𝑥) = 1 and 𝛽𝑋𝐽

(𝑥) = 0 , so 𝑥 ∈ 𝐽. Thus 𝑥 ∈ ⋂{𝐽: 𝐽 𝑖𝑠 𝑝𝑟𝑖𝑚𝑒 𝑠𝑒𝑚𝑖 𝑑 −

𝑖𝑑𝑒𝑎𝑙 𝑖𝑛 𝑋} . Hence 𝑥 is 𝑥 . Conversely, assume that 𝑥 is 𝑥. Let 𝐴 ∈ 𝑋 , then 𝐴∗ is prim semi d-ideal of 

𝑋, and 𝑥 ∈ 𝐴∗, therefore 𝛼𝐴(𝑥) = 1 , 𝛽𝐴(𝑥) = 0. Hence 𝜇 = 𝛼𝑥(𝜇,𝑣)
(𝑥) ≤ 𝛼𝐴(𝑥) and 𝑣 =  𝛽𝑥(𝜇,𝑣)

(𝑥) ≥

𝛽𝐴(𝑥) , where 𝑥(𝜇,𝑣) ⊆ 𝐴 for all 𝐴 ∈ 𝑋. Thus 𝑉(𝑥(𝜇,𝑣)) = 𝑋, i.e.  𝜒(𝑥(𝜇,𝑣)) = ∅  .  

iii) Let 𝐽 be any prim semi d-ideal of d-algebra 𝑋 and let 𝑋𝐽 be the intuitionistic fuzzy characteristic 

function of 𝐽. Now if 𝜒(𝑥(𝜇,𝑣)) = 𝑋, then 𝑉(𝑥(𝜇,𝑣)) = ∅, which implies that 𝑥(𝜇,𝑣) ⊈ 𝑋𝐽, and therefore 

𝛼𝑋𝐽
(𝑥) < 𝜇 and 𝛽𝑋𝐽

(𝑥) > 𝑣 , so 𝑥 ∉ 𝐽. Thus 𝑥 ∉ ⋂{𝐽: 𝐽 𝑖𝑠 𝑝𝑟𝑖𝑚𝑒 𝑠𝑒𝑚𝑖 𝑑 − 𝑖𝑑𝑒𝑎𝑙 𝑖𝑛 𝑋} . Hence 𝑥 is 𝑥 

.  The converse in the converse way .  

Theorem (3.15) : The sub-family {𝜒(𝑥(𝜇,𝑣)), 𝑥 ∈ 𝑋 and 𝜇, 𝑣 ∈ (0, 1] such that 𝜇 + 𝑣 ≤ 1} of 𝜒 is a 

base for 𝑇.  
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proof : Let 𝜒(𝐴) ∈ 𝑇, and let 𝐵 ∈ 𝜒(𝐴) , then 𝛼𝐵(𝑥) < 𝛼𝐴(𝑥) and 𝛽𝐵(𝑥) > 𝛽𝐴(𝑥) for some 𝑥 ∈ 𝑋 . 

Let 𝛼𝐴(𝑥) = 𝜇 and 𝛽𝐴(𝑥) = 𝑣, then 𝑥(𝜇,𝑣) ⊈ 𝐴 and so 𝐴 ∈ 𝜒(𝑥(𝜇,𝑣)) . Now 𝑉(𝐴) ⊆ 𝑉(𝑥(𝜇,𝑣)) , 

because if 𝑃 ∈ 𝑉(𝐴) , then 𝛼𝑃(𝑥) ≥ 𝛼𝐴(𝑥) = 𝜇 = 𝛼𝑥(𝜇,𝑣)
(𝑥) , and 𝛽𝑃(𝑥) ≤ 𝛽𝐴(𝑥) = 𝑣 = 𝛽𝑥(𝜇,𝑣)

(𝑥) . 

So that 𝑥(𝜇,𝑣) ⊆ 𝑃 and thus 𝑃 ∈ 𝑉(𝑥(𝜇,𝑣)) . Hence 𝜒(𝑥(𝜇,𝑣)) ⊆ 𝜒(𝐴) . Thus 𝐵 ∈ 𝜒(𝑥(𝜇,𝑣)) ⊆ 𝜒(𝐴). 

And this complete the proof .  

Theorem (3.16) : Spec(X) is disconnected if and only if there exist two 𝐼𝐹𝑆𝑑 − 𝑖𝑑𝑒𝑎𝑙 A, B such that 

rad(A ∪ B) = rad(1) and rad(A ∩ B) =  rad(0) .  

proof : Let spec(X) be disconnected, then there exist two 𝐼𝐹𝑆𝑑 − 𝑖𝑑𝑒𝑎𝑙 A,B in X such that 𝜒(A) ≠ ∅ , 

𝜒(B) ≠ ∅ , 𝜒(A) ∩ 𝜒(B) = ∅ , 𝜒(A) ∪ 𝜒(B) = spec(X) . That is mean 𝜒(A) ∩ 𝜒(B) = 𝜒(0̃) and 

𝜒(A) ∪ 𝜒(B) = 𝜒(1̃) . Thus 𝜒(A ∩ B) = 𝜒(0̃) and 𝜒(A ∪ B) = 𝜒(1̃) . So by proposition (3.10)(ii) " 

we get rad(A ∩ B) = rad(0̃) and rad(A ∪ B) = rad(1̃) . and in the converse way the proof will 

complete .  

Recall that a subset 𝐴 of a topological space 𝑋 is called strongly connected (s-connected) when we get 

for any open subset 𝑈  and 𝑉 of 𝑋 , if 𝐴 ⊆ 𝑈⋃𝑉 , then 𝐴 ⊆ 𝑈 or 𝐴 ⊆ 𝑉 . [12] 

Theorem (3.17) : Any subset of spec(X) is S-connected .  

proof : Let ℘ be a collection of an 𝐼𝐹𝑃𝑆𝑑 − 𝑖𝑑𝑒𝑎𝑙 of spec(X), and let 𝐶, 𝐷 be an 𝐼𝐹𝑆𝑑 − 𝑖𝑑𝑒𝑎𝑙 in 𝑋. 

Since ℘ ⊆ 𝜒(C) ∪ 𝜒(D) ⊆ 𝜒(C ∪ D) . Then by proposition (3.5) we get that ℘ ⊆ 𝜒(C) or ℘ ⊆ 𝜒(D) 

and this complete the proof .  

Theorem (3.18)   :  Spec(X) is a T0 − space .  

Proof : Let A, B ∈ 𝜒  and A ≠ B . Then either A ⊈ B or B ⊈ A . Let A ⊈ B then B ∉ V(A) , but A ∈
V(A) , Then B ∈ X(A)  , and A ∉ X(A) . Now let B ⊈ A similarly we can get A ∈ X(B) but B ∉ X(B). 

It follow that spec(X) is a T0 − space .  

Theorem (3.19) : In Spec(X) , V(A) = {A} for all 𝐼𝐹𝑆𝑑 − 𝑖𝑑𝑒𝑎𝑙 in 𝑋  

proof : It is clear that {A} ⊆ 𝑉(𝐴), since 𝑉(𝐴) is closed set containing 𝐴. Now let  B ∉ {A}, then there 

exist an open set X ∖ V(C) containing 𝐵 but not 𝐴, therefore C ⊈ B, but C ⊆ 𝐴 and so B ∉ V(A) . Thus 

𝑉(𝐴) ⊆ {A}, and that complete the proof .  

Corollary (3.20) : B ∈ {A} if and only if A ⊆ 𝐵 . 

proof : it is follow directly from theorem (3.19).  

Theorem (3.21) : Let 𝑌 = {𝑃 ∈ 𝑋: ⋀(𝑃) = {(0,1), (𝜇, 𝑣)}: 𝜇, 𝑣 ∈ [0, 1) such that 𝜇 + 𝑣 ≤ 1}, then 𝑌 

is 𝑇1 if and only if every singleton element of 𝑌 is an intuitionistic fuzzy maximal semi d-ideal of 𝑋 .  

proof : we need to show that the semi d-ideal 𝐴∗ = {𝑥 ∈ 𝑋, 𝛼𝐴(𝑥) = 1, 𝛽𝐴(𝑥) = 0} is a maximal semi 

d-ideal . It is sufficient to show that there is no prime semi d-ideal of  𝑋 containing 𝐴∗. Let 𝐽 is a prim 

semi d-ideal containing 𝐴∗, consider an 𝐼𝐹𝑆𝑑 − 𝑖𝑑𝑒𝑎𝑙 𝐵 of 𝑋 defined by 𝛼𝐵(𝑥) = {
1   𝑖𝑓 𝑥 ∈ 𝐽
𝜇  𝑖𝑓 𝑥 ∉ 𝐽

 and 
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𝛽𝐵(𝑥) = {
0   𝑖𝑓 𝑥 ∈ 𝐽
𝑣  𝑖𝑓 𝑥 ∉ 𝐽

 , where 𝜇 + 𝑣 ≤ 1. Then 𝐵 ∈ 𝑌 and 𝐴 containing in 𝐵 . This contradiction the 

fact that 𝑉(𝐴) ∩ 𝑌 = {𝐴} .  

Conversely, let 𝐴 is an 𝐼𝐹𝑀𝑆𝑑 − 𝑖𝑑𝑒𝑎𝑙 then the ideal 𝐴∗ = {𝑥 ∈ 𝑋, 𝛼𝐴(𝑥) = 1, 𝛽𝐴(𝑥) = 0} is 

maximal, we claim that 𝑉(𝐴) ∩ 𝑌 = {𝐴}. Clearly {𝐴} ⊆ 𝑉(𝐴) ∩ 𝑌. Now if 𝐵 ∈ 𝑉(𝐴) ∩ 𝑌, then 𝐴 ⊆ 𝐵 

and 𝐴∗ ⊆ 𝐵∗ . This mean that 𝐴∗ = 𝐵∗ , since 𝐴∗ is a maximal semi d-ideal . Hence 𝐵 = 𝐴, since 

 ⋀(𝐴) = ⋀(𝐵) = {(1,0), (𝜇, 𝑣)}, therefore 𝑉(𝐴) ∩ 𝑌 = {𝐴} , consequently {𝐴} is closed subset of 𝑌.  

Theorem (3.22) : If every prime semi d-ideal in 𝑋 is maximal , Then the space 𝐼𝐹𝑃𝑆𝑑 − 𝑆𝑝𝑒𝑐(𝑋) is 

not Hausdorff.  

proof : Let 𝐽 be a prim semi d-ideal of 𝑋, consider two 𝐼𝐹𝑃𝑆𝑑 − 𝑖𝑑𝑒𝑎𝑙𝑠 𝐴, 𝐵 of 𝑋 defined by 𝛼𝐴(𝑥) =

{
1     𝑖𝑓 𝑥 ∈ 𝐽
0.1  𝑖𝑓 𝑥 ∉ 𝐽

 and 𝛽𝐴(𝑥) = {
0   𝑖𝑓 𝑥 ∈ 𝐽

0.2  𝑖𝑓 𝑥 ∉ 𝐽
, 𝛼𝐵(𝑥) = {

1   𝑖𝑓 𝑥 ∈ 𝐽
0.3  𝑖𝑓 𝑥 ∉ 𝐽

 𝛽𝐵(𝑥) = {
0   𝑖𝑓 𝑥 ∈ 𝐽

0.4  𝑖𝑓 𝑥 ∉ 𝐽
 Let 

𝑋(𝑥(𝜇,𝑣)) and 𝑋(𝑦(𝜇,𝑣)) be any two basic open set in 𝑋 containing 𝐴 and 𝐵 respectively where 𝑥, 𝑦 ∈

𝑋 𝑎𝑛𝑑 𝜇 + 𝑣 ≤ 1. Then 𝑥(𝜇,𝑣) ⊈ A and 𝑦(𝜇,𝑣) ⊈ B , and so  𝑥 ∉ 𝐴∗ = 𝐽 and 𝑦 ∉ 𝐵∗ = 𝐽 . Since 𝐽 is 

prime then 𝑥𝑦 ∉ 𝐽, then 𝑥𝑦 is not nilpotent and so by theorem " (3.14) (i) and (ii) " we have 

𝑋(𝑥(𝜇,𝑣)) ∩ 𝑋(𝑦(𝜇,𝑣)) = 𝑋(𝑥𝑦(𝜇,𝑣)) ≠ ∅ . Hence 𝑋 is not Hausdorff .   
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