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Abstract. Let R be an arbitrary ring and T a submodule of an R-module M. A submodule N is said to be Te-

small in M, if for each essential submodule X of M, T ⊆ N + X implies that T ⊆ X. In this work we study this 

mentioned notion which is a generalization of the essential-small submodules as well as the T-small submodule. 

We use this notion to investigate T-essential radical of module, also to introduce generalized T-essential Hopfian 

modules. 

1. Introduction 

 

Throughout this work, all rings are associative with nonzero identity and all modules are unitary 

left R-modules. We use the notation '' ⊆ '' and '' ≤ ''to denote inclusion and submodule, respectively. 

Let R be a ring and M an R-module. Recall that a submodule N of M is small, denoted by N ≪ M, if 

for any submodule X of M, M = N + X implies that X = M. Dually, a submodule N is essential in an 

R-module M, if for any submodule K of M, N ∩ K = 0 implies that K = 0. In this case we denote K ⊴ 

M. For more details about small and essential  submodule see [1]. The notion of small submodules 

plays an important role in ring and module theory. D. X. Zhou and X.R.Zhang [4] generaliz the 

concept of small submodules to that of essential-small by considering the class of all essential 

submodules in place of all submodules. Let N be a submodule of an R-module M. N is called 

essential-small in M denoted by N ≪  M if N + L = M then L = M for all essential submodule L of M. 

Also R. Beyranvand  and F. Moradi [2] generalize the notion of small submodules by replacing an 

arbitrary submodule T (say) instead M. Let T be an arbitrary submodule of an R-module M. A 

submodule N of M is called T-small in M if for each submodule X of M, T ⊆ N + X implies T ⊆ X. 

The notion of smallness and T-smallness are coincide if T = M. 

 

The concept of essential-smallness and T-smallness are investing to investigate some radicals of 

modules. In [2] the authors define the essential radical of an R-module M, denoted by     (M) as 

    (M) = ∩{N ≤ M | N is essential and maximal in M}, and they proved that radical is equivalent to 

the sum of all essential-small submodules of M. While in [4], they proved the following. Let T be a 

nontrival finitely generated submodule of an R-module M. Then ⋂       = ∑      where B = { K ≤ M 

| K is a T-maximal submodule of M} and A = { L ≤  M | L is a T-small in M and L + K ⊆ T + K, for 

all T-maximal submodule K of M}.  ⋂      is called the T-radical of M and we denoted by   (M). 

This motivates us to define a new generalization of T-small submodules as well as of essential-small 

submodules. Let T be an arbitrary submodule of an R-module M. We say that a submodule N of M is 

an T-essential-small of M provided that T ⊆ N+X implies that T ⊆ X for all essential submodule X of 

M, Note that, every T-small submodule is T-essential-small and every essential-small submodule is 

M-essential-small. 

 

In the first section, we investigate the basic properties of T-essential-small submodules. In section two, 

we use the notion of T-maximal submodule [2], and introduce the T-essential radical of modules, T-

essential maximal submodules, we used this new class of submodules to investigate another radical of 

modules. Also introduce T-essential cosemisimple module and give some of their properties and 

characterizations. Finally in section three, we introduce the notion of generalized T-essential ( T-
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essential-closed ) Hopfian modules and give their characterizations in terms of T-essential-small 

submodules.  

 

§1 .T-essential-small submodules. 

 

In this section, as a generalization of essential-small submodules and T-small submodules, T-essential-

small submodules isintroduced, and their various properties are given. 

 

Definition. (1.1). Let Tbe an arbitrary submodule of an R-module M. A submodule N of M is called 

T-essential-small in M (simply Te-small), denote by N ≪   M, if for each essential submodule X of 

M, T ⊆ N + X implies T ⊆ X. 

 

    According to the definition, if T = 0, then every submodule of M is Te-small in M. Furthermore if T 

= M, then N ≪  M if and only if N ≪  M.It is clear that  0 ≪   M andM      M for any submodule 

T of M. 

 

Examples and Remarks (1.2). 

1. It is clear that every T-small submodule of an R-module M is Te-small. The converse is true on 

uniform modules. 

2.  For any positive integer m, the zero submodule is the only (mℤ )e-small in the ℤ -moduleℤ . 

3. Let ℤ   = < 1 /    + ℤ > and ℤ   = < 1 /    + ℤ> be submodules of the ℤ -module ℤ  . Then m > 

n if and only if ℤ  ≪      ℤ   

4. Let M be a semisimple R-module. Since M is the only essential submodule of M, then every proper 

submodule of M is Te-small. 

5. Consider the ℤ -module ℤ  and for T = 2ℤ  ,  8ℤ  ≪  ℤ  , but 8ℤ  is not T-small inℤ   

 

Proposition. (1.3).Let L, T, and K be submodules of an R-module M with L ⊆ T. Then 

1. K ≪   M implies that K∩T ≪ M. 

2. L ≪   M if and only if L ≪ T. 

 

Proof.1. Let X be an essential submodule of M and (K∩T) + X = M. Then T ⊆ (K∩T) + X ⊆ K + X 

and since K≪   M, then T ⊆ X. Thus  K∩T ⊆ X and hence X = (K∩T) + X = M. 

2.  Suppose L ≪   M and L + X = T for essential submodule X of T. Then T ⊆ L + X implies that T 

⊆ X. Thus T = X. Conversely, suppose L ≪ Tand T ⊆ L + X for essential submodule X of M. Then T 

=  (L+X)∩T = L + (X∩T) and hence X ∩ T = T, so T ⊆ X.         □ 

 

Proposition. (1.4). Let M be an R-module with submodule N, K,T and T,N ⊆ K. If N ≪   K, then N 

≪  M. 

 

Proof. Assume T ⊆ N + X for some essential submodule  X of M. Then T ⊆ (N + X) ∩ K = N + (X ∩ 

K) and hence T ⊆ X ∩ X            □ 

 

Proposition. (1.5). Let N, K and T be submodules of an R-module M. Then N ≪   M and K ≪  M if 

and only if N + K ≪   M 

 

Proof.Let X be an essential submodule of M with T ⊆ (N + K) +X. Then T ⊆ K + X and hence T ⊆ 

X. Conversely, if T ⊆ N + X and T ⊆ K + X, then T ⊆ (N+K) + X which implies that T ⊆ X.     □  

 

Proposition. (1.6). Let M be an R-module with submodules N, K and T such that K ⊆ N and K ⊆ T. 

If N ≪   M, then K ≪   M and N/K ≪       M/K. 
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Proof. Assume that N ≪   M. For each essential submodule X of M, if T ⊆ K + X, then T ⊆ N + X 

and hence T ⊆ X, so K ≪   M. Suppose  T/K ⊆ N/K + X/K for some essential submodule X/K of 

M/K. Then T ⊆ N + X and so T ⊆ X which implies that T/K ⊆ X/K. This shows that N/K ≪       

M/K                                                                           □ 

 

Proposition. (1.7). Let M be an R-module with Ni  ≤Mi ≤ M (i = 1,2) such that T ⊆ M1∩ M2. Then 

Ni≪  Mi (i = 1, 2) if and only if N1 + N2≪   M1 + M2. 

 

Proof.Let Ni≪   Mi(i = 1, 2). By proposition.(1.4), Ni≪   M1 + M2.By the help of proposition.(1.5), 

N1 + N2≪   M1 + M2. The other direction is clear.               □ 

 

Proposition. (1.8). Let M and N be R-modules and ⍺ : M → N an R-homomorphism. If K and T are 

submodule of M with K ≪   M, Then ⍺(K) ≪⍺     N. In particular, if K  ≪   M ≤ N, then K ≪  N. 

 

Proof.Let X be an essential of N such that ⍺(T) ⊆⍺(K) + X. If t   T, then ⍺(t) = x + ⍺(k) for some x   

X and k   K. Thus ⍺(t-k)   X and so t – k  ⍺  (X) and hence T ⊆ K + ⍺  (X). By Te-smallness of K 

in M, we have T ⊆⍺  (X) and ⍺(T) ⊆ X.       □ 

 

Theorem. (1.9). Let M be an R-module with submodules N, T and ⍺ a surjective endomorphism of M 

whose kernel is closed. Then N≪  M if and only if ⍺(N)≪⍺     M. 

 

Proof.The '' only if '' part follows from proposition. (1.8). Conversely, for essential submodule X of M 

suppose that T ⊆ N + X. Then ⍺(T) ⊆⍺(N) + ⍺(X). There is an isomorphism ⍺̅ : M / ker(⍺) →Nsuch 

that ⍺̅◦π = ⍺ where π : M → M / ker(⍺) is the natural epimorphism. Now,⍺(X) = ⍺̅( X/ ker(⍺)). Since 

ker(α) is closed, then by ([3], proposition (1-4))  we have ⍺(X) is essential in M. By ⍺(T)e-maximality 

of ⍺(N) in M we get ⍺(T) ⊆⍺(X) and hence T ⊆ X. This completes the proof.     □ 

 

Proposition. (1.10).Let {T⍺ ⍺   be an indexed family of submodules of an R-module M and N a 

submodule of M. If N ≪ ⍺  M for each ⍺  ∧, then N ≪ ∑  ⍺⍺    M. 

 

Proof.For an essential submodule X of M, assume that ∑  ⍺⍺  ⊆ N +X. Then for each ⍺   , T⍺⊆ N + 

X. As N≪  ⍺   M, then T⍺⊆ X for each ⍺    and hence ∑  ⍺⍺  ⊆ X       □ 

 

Corollary. (1.11). Let N1 and N2be two submodules of an  R-module M. If N1 and N2 are matually 

essential-small in M, then N1 ∩N2≪        M. 

 

Proof.Assume that N1 ≪    M and N2 ≪    M. By proposition.(1.6). N1 ∩N2≪   M and N1 

∩N2≪    M.So proposition. (1.10) implies that N1 ∩N2≪         M                     □ 

 

Proposition. (1.12). Let M be an R-module with submodules N and T( ≠ 0). Then the following are 

equivalent 

1. N ≪  M 

2. For any R-module L and essential R-homomorphism ⍺ : L → M, T ⊆ N + ⍺(L) implies that T 

⊆⍺(L). 

 

Proof.(1) → (2).It is clearbe the definition. (2) → (1). Suppose T ⊆ N + X for essential submodule X 

of M. Let i : X → M be the inclusion mapping. Then by (2) T ⊆ N + X = N + i(X) implies that T ⊆ X.  
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       Let M be an R-module with submodules N and T. A submodule N' of M is called Te-supplement 

of N in M, if N' is minimal essential submodule with the property T ⊆ N + N'. 

 

Proposition. (1.13). Let M be an R-module with submodules N, N', T and N' is Te-supplement of N in 

M. If N ≪   M, then T ⊆ N'. If in additional, T is essential, then T = N'. 

 

Proof.Since T ⊆ N + N' and N ≪   M, then T ⊆ N'. Furthermore, If T is essential in M, then 

minimality  of N' and T ⊆ N + T implies that T = N'           □ 

 

Theorem. (1.14). Let M be an R-module with submodules K,T and K' an T-supplement of K in M. 

Then  K≪    M if and only if for each essential submodule N of M, T ⊆ K + N implies that K' ⊆ N. 

 

Proof.The '' only if '' part is clear from the definition. For the '' if '' part, let X be an essential 

submodule of M with K' ⊆ X + K. Since T ⊆ K + K' ⊆ X + K, by the hypothesis, K' ⊆ X.                □ 

 

§2 . T-essential radicals of module 

 

Let M be an R-module and T a submodule of M. Recall that a submodule K of M is T-maximal if T ⊈ 

K and there exists no proper submodule W of K + T which contain K properly [2]. This is equivalent 

to saying that (K + T)/K is a simple R-module. It is clear that a submodule N is maximal in M if and 

only if N is M-maximal. 

 

For an R-module M, and a submodule T of M, consider the  following two families of submodules  

 

V = {K ≤ M | K essential and T-maximal in M} 

and W = {L ≪   M | L + K ⊆ T + K for all T-maximal submodule K in M} 

 

Theorem. (2.1). Let Mbe an R-module and T a nontrivial finitely generated submodule of M. Then  

⋂       = ∑      

 

Proof.  Let L   W. We show that L ⊆ K for each K   V. If not then K ≨ L + K ≤ T + K. Since K is T-

maximal we have L + K = T +K and hence T ⊆ L + K. But L ≪   M, then T ⊆ K and hence (T+K)/K 

= 0 with a contradiction. Thus ∑     ⊆⋂        Conversely, let x  ⋂      . we show Rx   V, for each 

essential  submodule X of M, suppose T ⊆ Rx + X and T ⊈ X. Consider the following family ₵ = {K 

≤ M | K is essential in M, T ⊈ K and X ⊆ K}. It is clear that ₵ is nonempty family and we can order ₵ 

by inclusion. Let T = ∑    
 
   , where x1,x2, . . . , xn  M. Let ₵' be a chain in ₵. It is clear that N 

⊆⋃       ≤ M. if T ⊆⋃      , then there exists {K1, K2, …, Kn} ⊆ ₵' such that for any 1≤ i ≤n, xi  Ki, 

we may assume Ki ≤ Kn for all 1 ≤ i ≤ n. Thus T ⊆Knwhich is a contradiction. Thus T ⊈⋃       and 

hence ⋃        ₵ and an upper bound of ₵'. By Zorn's lemma ₵ has a maximal element K0 (say). We 

claim that K0 is T-maximal. First we note that K0 is an essential submodule of M and (T+K0)/K0 ≠ 0. 

Assume that K0≨ U ≤ T + K0. By maximality of K0, we get T ⊆ U and hence U = T + K0 . Thus K0 is 

T-maximal and x   K0 which is a contradiction, because x  ⋂      . This shows that Rx ≪   M. on 

the other hand, for any T-maximal submodule K of M, K = Rx+ K and so Rx   V. Therefore 

⋂      ⊆∑                                                                             □ 

 

Let M be an R-module with a submodule T. we denote the intersection of all essential T-maximal 

submodules of M by    (M), and call it the T-essential radical of M.  By the proof of theorem. (2.1), 

we get the following evident result 
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Corollary. (2.2).  Let Mbe an R-module with nontrivial finitely generated submodule T. Then for any 

x   M and all T-maximal submodule K of M,x    (M) if and only if Rx ≪   M and Rx + T ⊆ T + K. 

Let M be an R-module. Then we have the following inclusion relation   (M) ⊆   (M) for any 

nontrivial finitely generated submodule T of M. 

 

Definition. (2.3). Let Mbe an R-module and T a submodule of M. A submodule K of M is called Te-

maximal, if T ⊈ K and there is no essential submodule W of M with the property K ≨ W ≨ K + T. 

This equivalent to saying that (K + T)/K is nozero and (K + T)/K is the only essential submodule of (K 

+ T)/K. 

 

Let M be an R-module and T a submodule of M. Consider the following two families of submodules 

of M. 

V' = {K ≤ M | K is Te-maximal submodule of M} 

W' = { L⊴ M | L ≪  M, L + K ⊆ T + K for all Te-maximal submodule K of M} 

 

Theorem. (2.4). Let Mbe an R-module and T a nontrivial finitely generated submodule of M. Then 

∑      ⊆⋂       ⊆∑        where 

 

W'' = {L ≪   M | L + K ⊆ T + K for all Te-maximal submodule K of M}. 

 

Proof.Let L   W' and there is a submodule K   V' such that L ⊈ K. Then K ≨ L + K ≤ T + K. Since K 

is Te-maximal in M, we have L + K = T + K and hence  T⊆ L + K. Since L ≪  M, then T ⊆ K wich 

is a contradiction. Thus L ⊆ K for each Te-maximal submodule K of M and hence ∑      ⊆⋂       . 

Let x  ⋂       . We show that Rx   W''. Suppose that there is an essential submodule X of M with T 

⊆ Rx + X and T ⊈ X. Consider the following family ₵ = {K ⊴ M | X ⊆ K and T ⊈ K}. Then ₵ is 

nonempty and we can ordered ₵ by inclusion. Let ₵' = {K⍺  ₵ | ⍺   } be a chain in ₵. It is clear that 

X ⊆⋃   ⍺  ⍺  ⊴ M. T = ∑    
 
    where x1, x2, …,xn  T. If T ⊆⋃   ⍺  ⍺  , then there exists {K⍺1, K⍺2, 

…, K⍺n} ⊆ ₵' . For any 1 ≤ i ≤ n , xi K⍺i , we may assume that K⍺i ≤ K⍺nfor all 1 ≤ i ≤ n. Thus T 

⊆K⍺nwhich is a contradiction. Thus T ⊈⋃   ⍺  ⍺   and hence ⋃   ⍺  ⍺    ₵ and an upper bound of ₵'. 

By Zorn's Lemma ₵ has a maximal element K0 (say). We claim that K0 is Te-maximal in M. it is clear 

T ⊈ K0. Assume that K0 ≨ U ≤ K0 + T, where U is an essential submodule of M. By maximalty of K0, 

we have T ⊆ U and hence U = K0 + T. Thus K0 is Te-maximal in M and x   K0 which is a 

contradiction, because x  ⋂       . This shows that Rx ≪   M. On other hand, for any Te-maximal 

submodule K of M, K = Rx + K ⊆ T + K  and so Rx   W'' .                                                 □ 

 

In the following proposition we see the behavior of Te-maximal submodules under homomorphisms.  

 

Proposition. (2.5). Let M and N be R-modules and ⍺ : M  → N an R-homomorphism. If T is a 

submodule of M and K is a Te-maximal submodule of M with ker(⍺) ⊆ K, then ⍺(K) is ⍺(T)e-

maximal in N. 

 

Proof.If ⍺(T) ⊆⍺(K), then for each t   T, ⍺(t) = ⍺(k) for some k   K and hence t - k  ker(⍺) ⊆ K. 

Thus t   K which is a contradiction. Now, let W be an essential submodule of N with ⍺(K) ≨ W ≤ ⍺(K 

+ T). Then K = ⍺  (⍺(K)) ≤ ⍺  (W) ≤ K + T. On the other hand K ≨⍺  (W), if not, that is K = 

⍺  (W) and since ⍺(K) ≨ W, there exists w   W\⍺  (K). But W ⊆α( K + T), this implies that w = α(k 

+ t) for some k   K and t  T. Thus k + t  ⍺  (W), and hence t   K. It follows that ⍺(t)  ⍺(K) which is 

a contradiction. ⍺  (W) is an essential submodule of M and K is Te-maximal in M, that ⍺  (W) = K + 

T and hence W = ⍺(K) + ⍺(T).         □ 

 

An R-epimorphism⍺ : M → N is called closed if ker(⍺) is closed in M. 
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Proposition. (2.6). Let M and N be R-modules and ⍺ : M → N a closed R-epimorphism, if T is a 

submodule of M and K is ⍺(T)e-maximal submodule in N, then ⍺  (K) is Te-maximal submodule of 

M. 

 

Proof. First we show that T ⊈⍺  (K), if not, then T ⊆⍺  (K) and hence ⍺(T) ⊆ K which is a 

contradiction. Suppose that W is an essential submodule of M with ⍺  (K) ⊆ W ⊆⍺  (K) + T. Then 

K = ⍺(⍺  (K)) ⊆⍺(W) ⊆ K + ⍺(T). There is an isomorphism ⍺̅ : M / ker(⍺) → N such that ⍺̅◦π = ⍺ 

where π : M → M / ker(⍺) is the natural epimorphism. Thus ⍺(W) = ⍺̅(W/ker(⍺)). Since ker(⍺) is 

closed, then W/ker(⍺) is essential in M and hence ⍺(W) is essential in N ([3], proposition(1-4)). By 

⍺(T)e-maximalty of K in N, then ⍺(W) = K or ⍺(W) = K + ⍺(T). If ⍺(W) = K, then W ⊆⍺  (⍺(W)) = 

⍺  (K) with the other case, if ⍺(W) = K + ⍺(T), let w  ⍺  (K) + T then w = a + t for some a  ⍺  (K) 

and t   T and so ⍺(w) = ⍺(a) + ⍺(t), hence a + t –w  ker(⍺) ⊆⍺  (K)⊆ W and a + t   W, this implies 

that ⍺  (K) + T ⊆ W. Thus ⍺  (K) + T = W. This implies that ⍺  (K) is Te-maximal submodule in 

M              □ 

Let M be R-module and T a submodule of M. We denote     (M) the intersection of all Te-maximal 

submodules of M. Then we have the following inclusion relation     (M)⊆  (M) ⊆   (M).  

Example. (2.7). Let R = ℤ , M = ℤ   and N ≤ M. Then all submodules of M have the following 

properties 

 

Example. (2.7). Let R = ℤ, M = ℤ   and N ≤ M. Then all submodules of M have the following 

properties 

 

N
 ≤

 M
 

N
 ⊴

 M
 

N
≪

 
 M

 

M
 

N
≪

 
ℤ
 
 M

 

N
≪

 
ℤ
 
 M

 

N
≪

 
ℤ
 
 M

 

N
≪

 
ℤ
 
 M

 

N
≪

 
ℤ
 
 M

 

N
≪

 
 
ℤ
 
 M

 

N
   ≪

 
M

 

N
 ≪

  
  M

 

N
 ≪

  
ℤ
 
 
  M

 

N
 ≪

  
ℤ
 
 
  M

 

N
 ≪

  
ℤ
 
 
  M

 

N
 ≪

  
ℤ
 
 
  M

 

N
≪

  
ℤ
 
 
  M

 

N
≪

  
 
ℤ
 
 
  M

 

N
     ≪

 
     M

 

M √ x x x x x x x √ x x x x x x x √ 

2ℤ   √ x x √ x x x x √ √ x √ x √ x √ √ 

3ℤ   x x x x x x √ x √ x x x √ √ √ √ √ 

4ℤ   √ x x x x √ x x √ √ x √ x √ x √ √ 

6ℤ   x √ x √ x x √ x √ √ √ √ √ √ √ √ √ 

8ℤ   x x x √ x √ x x √ √ x √ x √ x √ √ 

12ℤ   x √ √ √ x √ √ x √ √ √ √ √ √ √ √ √ 

0 x √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

 

    (M) = 6ℤ  ,     (M) = 6ℤ  ,     (M) = 2ℤ   

    ℤ    (M) = 12ℤ  ,     ℤ  (M) = 12ℤ  ,     ℤ    (M) = 4ℤ   

    ℤ    (M) = 0,     ℤ  (M) = 6ℤ  ,     ℤ    (M) = 2ℤ   

    ℤ    (M) = 0,     ℤ  (M) = 0,     ℤ    (M) = M 

    ℤ    (M) = 0,     ℤ  (M) = 12ℤ  ,     ℤ    (M) = 4ℤ   

    ℤ    (M) = 0,     ℤ  (M) = 0,     ℤ    (M) = M 

     ℤ    (M) = 0,      ℤ  (M) = 0,      ℤ    (M) = M 

    (M) = M,     (M) = M,     (M) = M 

Theorem. (2.8). Let M and N be R-modules and ⍺ : M → N a closed R-epimorphism such that ker(⍺) 

⊆    (M). Then ⍺(    (M)) =   ⍺    (N). 
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Proof.Consider the following two families,  

 

A = {K ≤ M | K is Te-maximal submodule of M} 

and B = {⍺(K) ≤ N | ⍺(K) is ⍺(T)e-maximal submodule of N}. 

  

Then by proposition (2.5) and (2.6) we have ⍺(    (M)) = ⍺(⋂     ) = ⋂ ⍺   ⍺      =   ⍺    ( N).

                                        

Proposition. (2.9). Let M and N be an R-modules and ⍺ : M → N a closed R-epimorphism if T is a 

submodule of M and K is an essential T-maximal submodule of M with ker(⍺) ⊆ K, then ⍺(K) is 

essential and ⍺(T)-maximal in N. 

 

Proof.First we show ⍺(K) in N. Since ⍺ is an epimorphism, then there is an isomorphism ⍺̅ : M / 

ker(⍺) → N such that ⍺̅◦π = ⍺ where π : M → M / ker(⍺) is the natural epimorphism. Since ker(⍺) is 

closed and K is essential in M, then K/ker(⍺) is essential in M/ker(⍺), and hence ⍺(K) = ⍺̅(K/ker(⍺)) is  

essential in N, ([3], 1.4). The rest of the proof as in ([2], lemma 3.4).                                          □ 

  

The proof of the proposition is a similar to that of lemma 3.5 [2]. 

 

Proposition. (2.10). Let M and N be R-modules and ⍺ : M → N an R-epimorphism. If T is a 

submodule of M and K is essential ⍺(T)-maximal submodule of N, then ⍺  (K) is essential T-

maximal in M.                                                                                                                                          □ 

 

Theorem. (2.11). Let M and N be R-modules and ⍺ : M → N a closed R-epimorphism such that 

ker(⍺) ⊆   (M). Then ⍺(   (M)) =  ⍺    (M). 

 

Proof. Consider the following two families  

 

A = {K ⊴ M | K is T-maximal submodule of M} 

and B = {⍺(K) ⊴ N | ⍺(K) is ⍺(T)-maximal submodule of N}. 

 

 Then by proposition(2.9) and (2.10), we have ⍺(   (M)) = ⍺(⋂     ) = ⋂ ⍺   ⍺      =  ⍺    ( N) □ 

 

Proposition. (2.12).  Let Mbe an R-module and T a submodule of M. If every proper essential 

submodule X of M with T ⊈ X is contained in a T-maximal submodule of M, then    (M) 

(resp.  (M),    (M))≪   M. 

 

Proof. Assume X is a proper essential submodule of M with T ⊆   (M) + X. T ⊈ X, then by the 

hypothesis, X ⊆ K for some T-maximal submodule K of M. Then K is essential in M. Thus    (M) ⊆ 

K, so T ⊆ K + X = K which is a contradiction. Thus T ⊆ X and hence    (M) ≪  M . The relation 

    (M) ⊆  (M) ⊆   (M) and proposition(1.6) imply that   (M) (    (M) ) ≪   M.                    □ 

 

As application of Zorn's lemma, we have the following corollary 

 

Corollary. (2.13). Let Mbe a finitely generated R-module. Then    (M) (resp.   (M),    (M) )≪   

M                                                                                                                                                           □ 

 

Let M be an R-module and T a nonzero submodule of M. We say that M is Te-cosemisimple, if each 

submodule of M is intersection of Te-maximal submodule of M. 
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Theorem. (2.14). Let Mbe an R-module and T a nonzero submodule of M.Then M is Te-

cosemisimpleif and only if           (M/K) = 0 for each closed submodule K of M. 

 

Proof. Suppose that M is Te-cosemisimple and K a closed submodule of M. Then K = ⋂     , where 

B is the family of Te-maximal submodules of M. Consider the following two families  

 

A = {S/K ≤ M/K | S/K is (T+K/K)e-maximal submodule of M/K} 

 

and A' = {S ≤ M | K ≤ S and S is Te-maximal submodule of M}. 

 

We note that by proposition(2.5) and (2.6), B ⊆ A' and S/K   A if and only if S   A' . Thus            

(M/K) = ⋂      = (⋂    )/K= (⋂    )/(⋂   ) = 0. Conversely, suppose that            (M/K) = 0 for 

all closed submodule K of M. Then  0 =            (M/K) = ⋂      = (⋂    )/K. This mean that K = 

⋂                                □ 

  

Proposition. (2.15). Let Mbe an R-module and T a nonzero submodule of M. If M is Te-

cosemisimple, then 

 

1. Every submodule of M containing T is Te-cosemisimple. 

2.M/N is ((T+N)/N)e-cosemisimple for each submodule N of M. 

 

Proof. 1.  Suppose T ≤ N ≤ M and M is Te-cosemisimple. If L is a submodule of N, then L = L ∩ N = 

(⋃     ∩ N = ⋂       where A is the set of all Te-maximal submodule of M. Since 

((S∩N)+T)/(S∩N) ≃ T/((S∩N)∩T) = T/(S∩T) ≃ S+T/T is a simple R-module, then ST/T is a simple 

R-module, then S∩N is Te-maximal submodule of N and hence N is Te-cosemisimple. 

2. Let L/N be a submodule of M/N. Since M is Te-cosemisimple, then L/N = (⋂   )/N = ⋂       , 

where A is the set of all Te-maximal submodules of M. By proposition(2.5) S/N is ((T+N)/N)e-

maximal in M/N. Thus M/N is ((T+N)/N)e-cosemisimple.                                                           □ 

 

§3. Generalized T-essential(-closed) Hopfian modules   

 

We start by the following proposition.  

 

Proposition. (3.1). Let Mbe an R-module with submodule K ⊆ N, K ⊆ T and K is closed in M. If K 

≪   M and N/K ≪       M/K, then N ≪   M. 

 

Proof.For an essential submodule X of M, assume that T ⊆ N+X. Then T/K ⊆ (N+X)/K ⊆ N/K + 

(K+X)/K. Since X + K is essential in M and K is closed in M, then (X+K)/K is essential in M/K. The 

hypothesis implies that T/K ⊆ (K+X)/K and hence T ⊆ K + X, but K ≪   M. Thus T ⊆ X.    □ 

 

The following corollaries follow from proposition(3.1) and (1.6). 

 

Corollary. (3.2). Let Mbe an R-module with submodules N, K and T such that K ⊆ N, K ⊆ T and K is 

closed. Then N ≪   M if and only if K ≪   M and N/K ≪   M/K.                      □ 

 

Corollary. (3.3).Let M be an R-module with submodules K ⊆ N and  K closed. Then N ≪   M if and 

only if K ≪   M and N/K ≪   M/K.                                                                        □ 

 

In proposition(1.9), we considered condition under which the image of Te-small submodules in a 

module being ⍺(T)e-small in M for some endomorphism ⍺. Now, we are interesting to consider the 
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inverse imagesof Te-small submodules. Recall that an R-module M is generalized to Hopfian (gH), if 

every surjective endomorphism of M has small kernel. 

 

 Here, we introduce the following  

 

Definition. (3.4).Let Mbe an R-module and T a submodule of M. We say that M is  

1. generalized T-essential-Hopfian (GTe-H), ifker(α) ≪   M for each surjective endomorphism ⍺ of 

M. 

2. generalized T-essential-closed-Hopfian (GTec-H), if for each surjective endomorphism ⍺ of M, we 

have ker(⍺) is closed in M and ker(⍺)≪   M. 

 

Theorem. (3.5). Let Mbe R-module and T a submodule of M. Then the following statements are 

equivalent  

1. M is GTec-H  

2. If N ≪   M, then for every surjective R-endomorphism ⍺ of M, ker(⍺) is closed in M and ⍺  (N) 

≪⍺       M. 

 

Proof.(1) → (2). Let ⍺ be a surjective endomorphism of M. For each essential submodule L/K of M/K 

where K = ker(⍺), assume ⍺  (T)/K ⊆⍺  (N)/K + L/K, then ⍺  (T) ⊆⍺  (N) + L and hence T ⊆ N + 

⍺(L). There exists an isomorphism ⍺̅ : M / k → M such that ⍺̅◦π = ⍺ where π : M → M / K is the 

natural epimorphism. Then ⍺(L) = ⍺̅(L/K) and hence ⍺(L) is essential in M,([3] proposition 1.4). Thus 

T ⊆⍺(L) and hence ⍺  (T)⊆ L. This implies that ⍺  (T)/K ⊆ L/K and hence ⍺  (N)/K ≪⍺           

M/K. By (1). K ≪   M and K is closed in M. By proposition(3.1) we have ⍺  (N) ≪⍺      M. 

(2) → (1). Let ⍺ be a surjective endomorphism of M. By(2) ker(⍺) is closed in M and ker(⍺)≪   M. 

Since 0 ≪   M for any submodule T of M, in particular 0 ≪⍺     M. Then ker(⍺) = ⍺  (0) ≪⍺       

M and hence ker(⍺)≪        ⍺   M. This implies that ker(⍺)≪   M. Thus M is GTec-H.                  □ 

 

Corollary. (3.6). Let Tbe a submodule of GTec-H R-module M and ⍺ a surjective endomorphism of 

M. Then the following are equibalent for a submodule N of M. 

1. N ≪   M. 

2.⍺(N) ≪⍺    M.  

3.⍺  (N) ≪⍺       M.                                                                                                                           □ 

 

Corollary. (3.7).  The following statements are equivalent for an R-module M 

1. M is GMec-H  

2. If N ≪  M, then for every surjective endomorphism ⍺ of M, ker(⍺) is closed in M and ker(⍺)≪  M.                                                                                                                           

 

Proposition. (3.8). Let Mbe an R-module and T a submodule of M. Then M is     GTe-H if and only if 

there exists a closed fully invaniant submodule N ≪   M such that M/N is G(T/N)e-H 

 

Proof. The ''if''' part is trivial by taking N = 0. For only if'' part, suppose that N is closed fully invariant 

submodule of M such that N  ≪   M and M/N is G(T/N)e-H. Let ⍺ : M → M be a surjective. Then 

define ⍺̅ : M/N → M/N by ⍺̅(m+N) = ⍺(m) + N for all m   M. Clearly. ⍺̅is well-defined surjective 

endomorphism of M/N. Then ker(⍺̅ ≪       M/N. Let ker(⍺̅) = L/N for some submodule L of M. 

Then L/N ≪       M/N and N ≪   M, so by proposition (3.1), L ≪   M, but ker(⍺) ≤ L, then 

ker(⍺)≪   M and hence M is GTe-H.                                                                                     □ 

 

Corollary. (3.9). Let Mbe an R-module. Then M is GMe-H if and only if there exists a closed fully 

invariant submodule N ≪   M such that M/N is G(M/N)e-H.                      □ 
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