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Abstract. In this paper, it was obtained estimators of the scale parameter of Extended
Poisson Exponential distribution by four methods using complete data, these methods
are the Maximum Likelihood Estimator (MLE), the Least Squares Estimator (LSE),
Plotting Position Estimator (PPE) and White Estimator (WE), these four methods
have been compared by the criteria of Mean Square Error (MSE) using Monte Carlo
simulation, and from the results on the samples in the simulation, the comparison in
this study showed that Maximum Likelihood Estimator method is best from other
methods followed by the White Estimator method then the Least Squares Estimator
method.
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1.Introduction

The Extended Poisson Exponential distribution was developed by Anum Fatima et al [1] in
2015 by taking the maximum random variable of Modified Exponential distribution when the
sample size follows to the zero truncated Poisson, this distribution has increasing and
decreasing in failure rates. the probability density function of the Extended Poisson
Exponential distribution is given by
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If ¢ =1, resulting distribution Poisson-Exponential distribution, when A approaches to
zero then resulting distribution converges to be modified exponential distribution. Also when
both o =1and A approaches to zero then the resulting distribution converges to exponential
distribution.

Hilary et al. [2] use The Extended Poisson Exponential distribution to obtained classes of
ordinary differential equations obtained for the probability functions,

The cumulative distribution function and survival function respectively for the Extended
Poisson Exponential distribution are
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We review in this paper four methods using complete data, which are the Maximum
Likelihood Estimator (MLE), Least Squares Estimator (LSE), Plotting Position Estimator
(PPE) and White Estimator (WE). These methods are compared in Section (6) by using the
criteria the mean square error (MSE) in the Simulation, all these four methods in this paper

which are estimate the scale parameter [ for the Extended Poisson Exponential distribution.

2. Maximum Likelihood Estimator Method (MLE)
From the probability density function of the Extended Poisson Exponential distribution (1),
then the likelihood function is:
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so the logarithm of this likelihood function is
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Where this symbol ﬁ’MLE is indicating to estimator the parameter 4 by using Maximum
Likelihood estimator method,

3. Least Squares Estimator Method (LSE)
The idea of Least Squares Estimator method is to minimize the sum of squared differences
between the random sample values and the estimate values by linear approximation [6].
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by using the cumulative distribution function of Extended Poisson Exponential distribution
(2) with respect to random sample values as follows
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By taking the logarithm of the equation (13) getting
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Comparing the equation (17) with the following simple linear model
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Where this symbol f . is indicating to estimator the parameter g by using least squares

estimator method, and F(x,) her is indicating to Empirical Distribution Functions as

following [4].
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(29)

4. Plotting Position Estimator Method (PPE):

This method proposed in (1982) by Whitten and Cohen, as new modification about moment
method [5], by following equation

E (F(x)))=F (X)) (30)
Where X ;s first order random variable, and F (x i )) is estimated unbiased for distribution
function F (x ;,)and replacement F (x ;,) by the following plotting position formula
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So that
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From equations (2) and (33), we get:
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Where this symbol :BPPE is indicating to estimator the parameter g by using plotting position

Estimator method.

5.White Estimator Method (WE)

The White estimator method is based on the survival function of the distribution when the
formula of the function converted to the formula of the linear regression equation, and
characteristics of linear regression equation are to use its estimators as primary estimators for
the parameters estimation methods.

To apply this method to the Extended Poisson Exponential distribution then from formula (3)
we obtain the following
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by taking the logarithm to both sides of equation (41) we get
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Comparing the equation (43) with the following linear regression formula [7]
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and from properties of linear regression formula then
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Where this symbol ﬁANE is indicating to estimator the parameter g by using White estimator

method.

6.The Simulation

In this section, we used the Monte Carlo simulation to compare the MSE criterion for
estimators of the scale parameter f for Extended Poisson Exponential distribution with
respect to MLE, LSE, PPE and WE methods. We used the three models in this paper, the first
model is a=0.4, =2, A=5, the second model is a=2, f=0.1, A=1 and the third model is a=0.3,
p=7,2=0.02 .

The MSE for these three models in this simulation is calculated by using 16,650 simulated
samples. All computations are performed using MATLAB R2014a in this simulation. We
have chosen sample sizes n=10, 25 and 50. We have generated the random numbers of in this
simulation by using the inversion of the cumulative distribution function of the Extended
Poisson Exponential distribution, the replicate the data for experiments are N times,
(N=100,250,500,1000) with sample size n, finally, the results of this simulation presented in
the following Tables.
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Table-1. The MSE for estimators of B for the first model
a=04,=2,1=5

Cr. MSE
eth.
MLE LSE PPE WE N
n
5.05722578 | 3.93320694 | 9.10016640 | 2.86776632 | 100
10 51.0351620 | 2.22073188 | 100.710227 1.87701302 | 250
13.5631492 | 3.54698655 168.424068 | 2.66079295 | 500
29.0217696 | 2.73924136 | 187.962907 1.94794646 | 1000
0.90847354 | 0.76988574 | 146.008230 | 0.88660994 | 100
25 0.46866467 | 0.83791225 | 226.717036 | 0.93909255 | 250
0.55686371 | 0.95335735 157.126656 | 0.95963150 | 500
0.65985539 | 0.84114734 | 245.092237 | 0.90665362 | 1000
0.12794017 | 0.45685368 | 149.469595 | 0.70077099 | 100
50 0.21753848 | 0.50855325 143.638433 | 0.68247000 | 250
0.17642587 | 0.47419249 | 84.3494201 0.67220023 | 500
0.20042505 | 0.41626251 144.881126 | 0.64036557 | 1000
Table-2. The MSE for estimators of [ for the second model
a=2,=011=1
Cr. MSE
eth.
MLE LSE PPE WE N
n
0.00731123 | 32.2374937 10.2819239 | 0.11004120 | 100
10 0.01650053 | 32.3534698 36.3749590 | 0.11112239 | 250
0.01455291 | 32.1996015 14.5882560 | 0.10827133 | 500
0.00967459 | 32.2637709 3.70105474 | 0.10731274 | 1000
0.00170161 | 34.9469741 9.85426441 | 0.10591912 | 100
25 0.00132984 | 34.8635290 1.46266773 | 0.10626035 | 250
0.00121820 | 35.3751739 16.6628251 | 0.10546927 | 500
0.00153725 | 35.2454909 12.4958577 | 0.10574951 | 1000
0.00043728 | 36.4193879 1.21211616 | 0.10445325 | 100
50 0.10445325 | 36.6110719 4.64319272 | 0.10450335 | 250
0.00037247 | 36.9552395 3.60435816 | 0.10319193 | 500
0.00045065 | 36.3927136 9.08742174 | 0.10406135 | 1000
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Table-3. The MSE for estimators of 3 for the third model
a=034=7,4=0.02

Cr. MSE
eth.
MLE LSE PPE WE N

n
4.43437700 | 48.9092654 | 69.2456390 | 47.937308 100

10 3.69142302 | 48.9063453 | 61.6323112 | 45.520512 250
3.91629449 | 48.9104247 | 69.2648908 | 49.300202 | 500
3.89564879 | 48.9076370 | 65.3759113 | 40.540275 | 1000
1.31814472 | 48.8997468 | 64.5364294 | 44.671430 | 100

25 1.19785384 | 48.9050830 | 67.5422129 | 95.439691 | 250
1.10533600 | 48.9005774 | 68.5356965 | 66.813775 500
1.16809250 | 48.8990950 | 60.6954242 | 36.102083 | 1000
0.51217300 | 48.9010279 | 68.0145756 | 40.281347 | 100

50 0.67876019 | 48.8971059 | 62.2632288 | 45.037464 | 250
0.63081670 | 48.8981232 | 63.2391621 | 45.586029 | 500
0.59750559 | 48.8968837 | 63.6201295 | 43.090108 | 1000

7. The conclusion
We can make the comments of results in the above Simulation tables as the following:

1. The results presented in Table-1 of the simulation is conclusions may be summarized as
following: According to the MSE criterion, when n=10 then the WE is best method and
comes after LSE with all replicates (N=100,250,500,1000), and when n=25, 50 thin the MLE
is best method and comes after LSE with all replicates N.

2. The results presented in Table-2 of the simulation is conclusions may be summarized as
following: According to the MSE criterion, then the MLE is best method and comes after WE
with all sample sizes (n=10, 25,50) and all replicates (N=100,250,500,1000).

3. The results presented in Table-3 of the simulation is conclusions may be summarized as
following: According to the MSE criterion, then the MLE is best method and comes after WE
with all sample sizes (n=10, 25,50) and all replicates (N=100,250,500,1000).
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