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Abstract. The present work deals with the existence and uniqueness of solutions for new 

class of hemiequilibrium problems 

𝛝(𝐱, 𝐲) + 𝑣(𝐲) − 𝑣(𝐱) + 𝐏𝟎(𝛀𝐱 ; 𝛀 𝛅(𝐱, 𝐲)) ≥ 𝟎. 

The proof of the first result is based on arguments of Tarafdar's theorem 

involving 𝜓 – monotone bifunction. Moreover, an application to the existence of 

solution for a differential inclusion is given.  

Keywords: hemiequilibrium problem; Tarafdar's fixed point Theorem; Monotone bi-function; 

differential inclusion. 
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1.  Introduction and preliminaries 

Equilibrium and hemiequilibrium problems have witnessed an explosive growth in theoretical 

advances and algorithmic developments across almost all disciplines of pure and applied sciences. For 

more details on a variety of mechanical, economics and optimal control problems related to this 

incident the reader can be referred to ([10], [16], [20], [24] and [27] ). In the papers above, 

Researchers studied the existence and uniqueness of solutions depended on Clarke's generalized 

gradient and directional derivative for locally Lipchitz functions, by using different tools such as fixed 

point theorems, KKM theorems, critical point theory, surjectivity theorems for pseudomonotone and 

coercive operators (see [1], [2], [8], [11], [13] and [26] ). The monotonicity and generalized 

monotonicity play an important role in the study of equilibrium and hemiequilibrium problems. 

Recently, a substantial number of papers on existence results for solving equilibrium problems, mixed 

equilibrium problems and hemiequilibrium problems based on different generalization of monotonicity 

such as quasimonotonicity, semimonotonicity, relaxed monotonicity, 𝛼-monotonicity and 𝜂-

monotonicity are published (see [23] and [28- 30]). Variational inequalities are such important were 

introduced in 1964, it has been a powerful tool to investigate a wide class of unrelated problems 

arising in the industrial, as a unified and general framework. Variational inequalities have been 

generalized and extended in several directions using novel techniques (see [3], [14] and [21]). 

In this article, unless stated otherwise, assume that 𝐸 is Banach space and 𝐸∗ is a topological dual 

space of 𝐸, whereas ⟨. ; . ⟩ and ∥ . ∥ denote the duality pairing between 𝐸 and 𝐸∗ and norm in 𝐸∗, 

respectively. For the convenience of the reader, we mention some basic definitions and results that 

will help us to prove our main results.     

     We recall that a function 𝑃 ∶  𝐸 → 𝑅 is called locally Lipschitz if for every 𝑢 ∈ 𝐸 there exists a 

neighborhood 𝑈 of 𝑢 and a constant 𝐿𝑢  >  0 such that 

|𝑃(𝑤)   𝑃(𝑣)|  ≤  𝐿𝑢 ∥ 𝑤 − 𝑣 ∥ 𝐸;  𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑣, 𝑤 ∈  𝑈. 
Definition 1.1. Assume that 𝑃 ∶  𝐸 → 𝑅 is a locally Lipschitz functional. The generalized derivative 

of 𝑃 at 𝑢 ∈ 𝐸 in the direction of  𝑣 ∈  𝑋, denoted by 𝑃0(𝑢;  𝑣), is defined as 

 

𝑃0(𝑢;  𝑣) = lim
𝑤→𝑢
𝜆↓0

𝑆𝑢𝑝
𝑃(𝑤 + 𝜆𝑣) − 𝑃(𝑤)

𝜆
. 
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Lemma 1.2. Let 𝑃 ∶  𝐸 → 𝑅 be locally Lipschitz function of rank 𝐿𝑢 near the point 𝑢 ∈  𝐸. Then 

 

(i) The function 𝑣 ↦ 𝑃0(𝑢;  𝑣) is finite, positively homogeneous, subadditive and satisfies 

that |𝑃0(𝑢;  𝑣)| ≤ 𝐿𝑢‖𝑣‖𝐸; 
(ii) 𝑃0(𝑢;  𝑣) is upper semicontinuous. 

(iii) 𝑃0(𝑢; −𝑣) = (−𝑃)0(𝑢;  𝑣) . 

A detailed proof is found in [6]. 

 

Definition 1.3. The generalized gradient of a locally Lipschitz function 𝑃 ∶  𝐸 → 𝑅 at a point 𝑢 ∈ 𝐸 

(subset of a dual space 𝐸∗) is defined by 

𝜕𝑃(𝑢) = {𝜁 ∈ 𝐸∗: 𝑃0(𝑢;  𝑣) ≥ (𝜁, 𝑣)𝐸  𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑣 ∈ 𝐸}. 
 

     Herewith, we point out that for each 𝑢 ∈  𝐸, we have 𝜕𝐽(𝑢)  ≠  ∅. In order to see that it suffices to 

apply the Hahn-Banach theorem (see e.g. [5]).  Let 𝜗, 𝜏  ∶  𝐾 × 𝐾 →  𝑅 be bi-functions where 𝐾 is a 

nonempty subset of Banach space E such that 𝜗(𝑥;  𝑥)  =  𝜏(𝑥;  𝑥)  =  0. Then In 1998 Riahi [22] 

introduced a new type of monotone bi-function. They called it  𝜗 -monotone bi -function, as follows: 

 

Definition 1.4. 𝜗 is called  𝜓 - monotone iff 

 

𝜗(𝑥;  𝑦) +  𝜗(𝑦;  𝑥) ≤  𝜓(𝑥;  𝑦) +   𝜓(𝑦;  𝑥)𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥;  𝑦 ∈  𝐾. 
 

    Note that, the monotonicity implies 𝜓- monotonicity. However, the converse is not true in general, 

as shown in the example below. 

 

Example 1.5.  Let 𝑋 =  ℓ𝑝 be a reflexive Banach space, 1 <  𝑝 <  ∞, where 

X = { x =  {xn}  ⊆  R: ∥ x ∥ =  (∑|xn|p

n≥1

)

1
p

} . 

Define a set {𝐾 =  𝑥 ∈  ℓ𝑝 ∶ ∥ 𝑥 ∥ ≤  1} which is non-empty closed and convex subset of ℓ𝑝.  
 𝜗 ∶  𝐾 ×  𝐾 →  𝑅 such that 𝜗 (𝑥;  𝑦) =∥  𝑦 −  𝑥 ∥2. Then, 

 𝜗 (𝑥;  𝑦) +  𝜗 (𝑦;  𝑥) =  2 ∥  𝑦 −  𝑥 ∥2 >  0, for 𝑥 ≠ 𝑦, in which 𝜗 is not monotone bi-function. But 

one can choose  𝜓: 𝐾 ×  𝐾 →  𝑅 such that  𝜓(𝑥;  𝑦) =  2 ∥  𝑦 − 𝑥 ∥2. Then, 𝜗 is 𝜓- monotone bi-

function. 

 

The next notion of Tarafdar's theorem plays an important role in the proof of our main results. 

 

Theorem 1.6.  [25] Let 𝐾 be a non empty and convex of a Hausdorff Topological vector space 𝐸 and 

that 𝜋 ∶  𝐾 ⊸  𝐾 be a set valued map. Then, ∃𝑥0  ∈ 𝐾  such that 𝑥0 ∈ 𝜋(𝑥0)  If the following are 

satisfied    

    

(i) For any 𝑥 ∈  𝐾, 𝜋(𝑥) is a non empty convex subset of 𝐾, 

(ii) For any 𝑦 ∈  𝐾, 𝜋−1 (𝑦)  = {𝑥 ∈ 𝐾, 𝑦 ∈ 𝜋(𝑥)} contains an open set 𝑂𝑦 which may be 

empty. 

(iii) U
𝑦∈𝐾

𝑂𝑦 = 𝐾. 

(iv) There exists a nonempty set  U0 contained in a compact convex subset 𝑈1 of K in which 

𝐺 =  ∩
𝑦∈𝐾

𝑂𝑦
𝑐   is either empty or compact. 

 

Definition 1.7. [7] Let 𝜗 be a real-valued function, defined on a convex subset 𝐾 of 𝐸, is said to be 

hemi continuous, if 
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lim
𝑡→0+

𝜗 (𝑡𝑥 + (1 − 𝑡)𝑦) =  𝑔(𝑦)𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥, 𝑦 ∈  𝐾. 

 
Definition 1.8. Let 𝑥𝑛 be a sequence of a Banach space 𝐸 such that 𝑥𝑛  → 𝑥0. Then, the mapping ∧∶
 𝐸 →  𝑅 is said to be 

(i)  lower semi continuous (for short, (u.s.c)) at 𝑥0  ∈  𝐸, if 

∧ (𝑥0)  ≤  lim
𝑛

 𝑖𝑛𝑓 ∧ (𝑥𝑛) 

(ii) upper semi continuous (for short, (u.s.c)) at 𝑥0  ∈  𝐸, if 

∧ (𝑥0)  ≤  lim
𝑛

 𝑠𝑢𝑝 ∧ (𝑥𝑛) 

 

Definition 1.9. [22] Let 𝐸 be a Banach space and that 𝜗 ∶  𝐾 →  𝐸∗ is a proper function. Then, 𝑥∗  ∈
 𝐸∗ is a  𝜓 -subdifferential of 𝜗 𝑖𝑛 𝑥 ∈  𝑑𝑜𝑚𝜗 = { 𝑥 ∶  𝜗(𝑥)  <  ∞}, if 
 

𝜗𝜓𝜗(𝑥) = {𝑥∗  ∈  𝐸∗: 𝜗(𝑦) − 𝜗(𝑥) ≥ 〈𝑥∗, 𝑦 − 𝑥〉 − 𝜓(𝑥, 𝑦)𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑦 ∈ 𝐾} 

 

Remark 1.10. Throughout this paper, let us assume that for each 𝜆 ∈ (0, 1) 

lim
𝜆→0

𝜓(𝑥, 𝑥𝜆)

𝜆
+ 𝜓(𝑥, 𝑦) = 0. 

 

    In the following, we consider a hemiequilibrium problem on a nonempty subset K of a Banach 

space 𝐸. 

 

Find an element 𝑥 ∈  𝐾 such that 

𝜗(𝑥, 𝑦) + 𝑣(𝑦) − 𝑣(𝑥) + 𝑃0(Ω𝑥, Ω𝑠(𝑥, 𝑦)) ≥ 0  𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑦 ∈ 𝐾,             (1.1) 

     where  Ω ∶  𝐸 → 𝐸 is a linear compact operator, 𝛿 ∶  𝐸 ×  𝐸 →  𝐸 single-valued function, 𝑃 ∶
 𝐸 → 𝑅 locally Lipschitz functional and 𝑣 ∶  𝑋 →  𝑅 {+∞}, where 𝑑𝑜𝑚𝑣 = {𝑥 ∈ 𝐸: 𝑣(𝑥)< +∞}  
  is the effective domain of 𝑣. In order to solve problem (1.1), we assume that the following is fulfilled: 

H1: The mapping 𝛿(. ; . ) ∶  𝐸 ×  𝐸 →  𝐸 satises the following assumptions 

(i) 𝛿(𝑢; 𝑢) = 0 for all 𝑢 ∈ 𝐸, 
(ii) 𝛿(𝑢; . ) is linear operator for all 𝑢 ∈ 𝐸, 
(iii) for any 𝑣 ∈ 𝐸, 𝛿(𝑢𝑚; 𝑣) ⇀ 𝛿(𝑢; 𝑣), whenever 𝑢𝑚 ⇀ 𝑢. 
H2: 𝜗 is    𝜓 −monotone bi function on 𝐾 𝑜𝑓 𝐸∗. 

H3: 𝑣 is a convex on 𝐾, 𝐾 ∩ 𝑑𝑜𝑚𝑣 ≠  𝑣. 
 

Remark 1.11. From the convexity of 𝑃0(𝑢, 𝑣) and linearity of 𝜃(𝑢, . ) for all 𝑢 ∈  𝐸. One can get that 

𝑣 ↦  𝑃0(𝑢, 𝜃(𝑢, 𝑣)) is convex function. 

 

Remark 1.12. It is clear that Ω𝑢𝑛 converges strongly to some Ω𝑢  ∈ 𝐾 because Ω is a linear compact 

operator. Hence, Ω𝛿(𝑢𝑛, 𝑣) converges strongly to Ω(𝑢, 𝑣) in which 𝑣 ∈  𝐾. By applying this fact, 

together with Lemma 1.2 (ii), one can get that 

 

lim
𝑛

sup  𝑃0 (Ω𝑢𝑛; Ω𝛿(𝑢𝑛, 𝑣)) ≤ 𝑃0(Ω𝑢 ; Ω𝛿(𝑢 , 𝑣)). 

 

Upcoming, an example of linear compact operator which satisfies hypothesis 𝐻1. 

 

Example 1.13. Let 𝑔 ∶  𝑋 →  𝑋 be a functional such that 𝜋(𝑥) ∶=  𝑟Ω(𝑥)  +  𝑠 and 

𝑟 >  0;  𝑠 ∈ 𝑋 and assume that Ω ∶  𝑋 →  𝑋 be a linear compact operator. Define 

the function 𝛿: 𝑋 ×  𝑋 →  𝑋 as follows: 

𝛿(𝑢, 𝑣) ≔ 𝜋(𝑢) − 𝜋(𝑣),   𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑢, 𝑣 ∈ 𝑋. 
In this case, 𝜃(𝑣;  𝑢) satises the assumations (i), (ii) and (iii) from 𝐻1. 
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Next, some special cases of a problem 1.1 are recalled. 

(i) 𝜗(𝑥, 𝑦) = 〈𝐴𝑥, 𝑦 − 𝑥〉 and  𝑃, 𝑣 ≡ 0 then problem 1.1 is reduces to the standard 

variational inequality (see [9]). 

(ii) 𝜗(𝑥, 𝑦) = 〈𝐴𝑥, 𝑦 − 𝑥〉 , 𝛿(𝑥, 𝑦) = 𝑦 − 𝑥 , Ω is surjective and 𝑣 ≡ 0 then problem 1.1 is 

reduces to the hemivariational inequality (see [30]). 

(iii) 𝐼𝑓 𝑃, 𝑣 ≡ 0 then problem 1.1 is reduces to the classical equilibrium problem (for short, 

(EP)), for which an element 𝑥 ∈  𝐾 is found such that 

                 𝜗(𝑥;  𝑦)  ≥  0 for each 𝑦 ∈ 𝐾 (see [4]). 

(iv) 𝑃 ≡ 0 then problem 1.1 is reduces to the Mixed equilibrium problem (for short, (MEP)), 

for which an element 𝑥 ∈  𝐾 is found such that  

𝜗(𝑥;  𝑦) + 𝑣(𝑦) − 𝑣(𝑥) ≥ 0 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑦 ∈  𝐾 (𝑠𝑒𝑒 [17]). 
(v) 𝐼𝑓 𝑣 ≡ 0  then problem 1.1 is reduces to the hemivariational-like inequality (for short, 

(HLI )), for which an element 𝑥 ∈  𝐾 is found such that 

  𝜗(𝑥, 𝑦)+𝑃0(Ω𝑥; Ω𝛿(𝑥 , 𝑦)) ≥ 0 for each 𝑦 ∈  𝐾 (see [19]). 

 

     The chief aim of this work is to give a new contribution in this field. In particular, we study new 

type of hemiequilibrium problem, comprising a kind of generalized monotonicity, so called -monotone 

operator in reflexive and non-reflexive Banach spaces. Hereby, we would like to mention that we do 

not deal with a classical technique to proof our results. Thus, several difficulties occur in finding an 

application to the main results, because the classical methods fail to be applied directly. In order to 

achieve the aim, the study is divided into the following sections. In Section 2, under suitable 

conditions, we provide sufficient conditions for existence and uniqueness of solutions for the problem 

on convex and closed sets (either bounded or unbounded). In Section 3, we illustrate the applicability 

of our approach by a differential inclusion in the special case of our main results. We point out the fact 

that the results of this work can be viewed as generalization of many known results in the literature 

(see [12], [15] and [18]). 

2.  Main results  

In this section we establish some existence results for hemiequilibrium problem 1.1. It is worth     

mentioning that through the results of this section, we prove the existence of a solution of the problem 

1.1 without the assumption of boundedness of the set K. In the next lemma, we assume that K is a 

nonempty subset of a real reflexive Banach space E. 

 

Lemma 2.1. Let ϑ, 𝜓  ∶  𝐾 × 𝐾 →  𝑅 be two bi functions and that ϑ, 𝜓  are hemi continuous in the 

first argument and convex in the second argument. If the conditions (𝐻1) - (𝐻3) are fulfilled, then a 

hemiequilibrium problem 1.1 is equivalent to the following problem: 

      Find an element x ∈ K such that 

 ϑ(y, x) − ψ(x, y) − 𝑣(y) + 𝑣(x) ≤ P0(Ωx ; Ω δ(x, y)) + ψ(y, x) for each y ∈ K      (2.1) 

 

Proof. Suppose that the 1.1 has a solution. Then, exists element x ∈ K such that 

𝜗(𝑥, 𝑦) + 𝑣(𝑦) − 𝑣(𝑥) + 𝑃^0 (𝛺𝑥 ; 𝛺 𝛿(𝑥, 𝑦)) ≥ 0 for each y ∈ K. 
By 𝜓_ monotonicity of ϑ, we have 

ϑ(y, x) + ϑ(x, y) ≤ ψ(x, y) + ψ(y, x) for each x, y ∈ K, then 

ϑ(y, x) − ψ(x, y) ≤ − ϑ(x, y) +  ψ(y, x) 

                                                                               ≤ 𝑣(y) − 𝑣(x) + P0(Ωx ; Ωδ(x, y)) + ψ(y, x). 

Therefore, x ∈ K is a solution of problem 2.1. Conversely, assume that x ∈ K is a solution of problem 

2.1 and fix y ∈ K. 

Letting xλ = x − λ(x − y) , λ ∈ (0,1). Then xλ ∈ K , since K is a convex, and 

                                       ϑ(xλ, x) − 𝑣(xλ) + 𝑣(x) − ψ(x, xλ) − ψ(xλ, x) ≤  P0(Ωx ; Ωδ(xλ, x)) 
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                                               = λP0(Ωx ; Ωδ(y, x)).     (2.2) 

Since ϑ is convex in the second argument, one can obtain 

0 = ϑ(xλ, xλ) ≤ ϑ(xλ, x) − λ[ϑ(xλ, x) − ϑ(xλ, y)]. 
Then, 

λ [ϑ(xλ, x) − ϑ(xλ, y)] ≤  ϑ(xλ, x)                                       (2.3) 

The convexity of v and  ψ in the second argument implies that 

λ[ 𝑣(x) − 𝑣(y)] ≤  𝑣(x) − 𝑣(xλ).                            (2.4) 
and 

λ[ψ(xλ, x) − ψ(xλ, y)] ≤  ψ(xλ, x)                            (2.5) 

From (2.2)-(2.5), one can get 

                                                 λ[ϑ(xλ, x) − ϑ(xλ, y) + 𝑣(x) − 𝑣(y) + ψ(xλ, x) − ψ(xλ, y)] 
≤  ϑ(xλ, x) − 𝑣(xλ) + 𝑣(x) + ψ(xλ, x) 

                                                   ≤ λP0(Ωx ; Ωδ(y, x)) + 2ψ(xλ, x) + ψ(x, xλ). 

The hemi continuousity of ϑ and  ψ in first argument implies that 

−λ[ϑ(x, y) − 𝑣(x) + 𝑣(y) + P0(Ωx ;  Ωδ(y, x)) + ψ(x, y)] 

                                         ≤ ψ(x, xλ) + 2λψ(x, x). 
Then, 

ϑ(x, y) − 𝑣(x) + 𝑣(y) + P0(Ωx ; Ωδ(y, x)) ≥  
−ψ(x, xλ)

λ
− ψ(x, y).         (2.6) 

From Remark (1.10) and (2.6), we have 

ϑ(x, y) − 𝑣(x) + 𝑣(y) + P0(Ωx ; Ωδ(y, x)) ≥ 0 for each y ∈ K. 

Therefore, the problem 1.1 admits at least one solution.                                                                         □                                                                             

 

Theorem 2.2. Let K be a non-empty closed bounded convex subset of a reflexive Banach space E. 

Assume that ϑ , ψ ∶ K × K → R be two bi-functions in which the conditions (H1) − (H2) and that the 

following hypotheses are hold. Then 1.1 admits at least one solution. 

 

(i) ϑ(. , y)and ψ(. , y) are hemi continuous; 

(ii) ϑ(x, . )and ψ(x, . ) are convex; 

(iii) ϑ(x, . )and 𝑣  are l.s.c; 

(iv) lim
n

sup{ψ(xn, y) + ψ(y, xn)}  ≤  ψ(x, y) + ψ(y, x). 

 

Proof. Arguing by contradiction suppose that 1.1 has no solution. Then for each x ∈ K there exist y ∈ 

K such that 

ϑ(x, y) + 𝑣(y) − 𝑣(x) + P0(Ωx ; Ωδ(x, y)) < 0. 
This implies, by Lemma 2.1, that, for each x ∈ K , there exist y ∈ K such that 

ϑ(x, y) − ψ(x, y) − 𝑣(y) + 𝑣(x) > P0(Ωx ;  Ωδ(x, y)) + ψ(y, x).         (2.7) 

Let η: K ⊸ K  be a set valued mapping as defined follows: 

η(x) = { y ∈ K ∶  ϑ(x, y) + 𝑣(y) − 𝑣(x) + P0(Ωx ;  Ωδ(x, y)) < 0 }. 
 

Our claim that η satisfies the hypotheses of Tarafdar′s fixed point theorem. It is clear that η is a non-

empty set for x ∈ K.  Let  x ∈ K be arbitrary fixed and w = (1 − λ)y1 + λy2, with y1, y2  ∈ η(x), t ∈
[0,1]. Taking into the account the effect of the convexity v  and ϑ(x, . ), then the remark (1:11) illus- 

trates that 

0 > (1 − λ)[ϑ(x, y1) + 𝑣(y1) − 𝑣(x) + P0(Ωx ;  Ωδ(x, y1))]                              

+ λ[ϑ(x, y2) + 𝑣(y2) − 𝑣(x) + P0(Ωx ;  Ωδ(x, y2))] 

                          ≥ ϑ(x, w) + 𝑣(w) − 𝑣(x) + P0(Ωx ;  Ωδ(x, w)). 
It means that w ∈ η(x), so , η(x) is convex for any x ∈ K . For y ∈ K , then 

                      η−1(y) = { x ∈ K ∶ y ∈  η(x)} 
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= { x ∈ K ∶  ϑ(x, y) + 𝑣(y) − 𝑣(x) +  P0(Ωx ;  Ωδ(x, y)) < 0 } 

                                 ⊇ { x ∈ K ∶  ϑ(x, y) − ψ(x, y) − 𝑣(y) + 𝑣(x) >  P0(Ωx ;  Ωδ(x, y)) + ψ(y, x)} 

                                     = Oy. 

From lemma (2:1) one can prove that the above inclusion. It follows that, we will show that Oy
c  is a 

weakly closed. Adding condition iv and remark (1:11) into account and since ϑ(y, . ) and v are l.s.c. 

one can obtain 

     ϑ(y, x) + 𝑣(xn) ≤  lim
n

inf[ϑ(y, xn) + 𝑣(xn)] 

≤  lim
n

sup { ψ(xn, y) + 𝑣(y) + P0(Ωxn ;  Ωδ(xn, y)) + ψ(y, xn)} 

                                  ≤  ψ(x, y) + 𝑣(y) + P0(Ωx ;  Ωδ(x, y)) + ψ(y, x). 

Therefore, Oy
c  is a weakly closed for any  y ∈ K. 

Our claim that ⋃ Oy = Ky∈K . It suffices to prove 

⋃ Oy ⊇ K.

y∈K

 

 For arbitrary 

x ∈ K, using (2.7), there exist y ∈ K such that x ∈ Oy. Therefore, the desired inclusion holds. Then, 

G = ⋂ Oy
c

y∈K  is either empty or weakly closed set as it is the intersection of weakly closed sets Oy
c . 

     It is clear that K is weakly compact set since it is a non-empty, bounded, closed and convex of 

reflexive space E. It means that G is weakly compact set. Hence, the hypotheses of Tarafdar′s fixed 

point theorem are hold. Hence, there exists an element x0 ∈ K and x0 ∈  η(x0) such that 

0 = ϑ(x0, x0) + 𝑣(x0) − 𝑣(x0) + P0(Ωx0 ;  Ωδ(x0, x0)) < 0. 
This is a contradiction which assured that the problem 1.1 has at least one solution.                             □                                                

 

For uniqueness of solutions, we introduce the next result. 

 

Theorem 2.3. Suppose that the hypotheses (i − iv) in Theorem 2.2 are fulfilled as well as the 

following assumptions: 

      A1 ∶  ∃ M > 0 such that ϑ(a, b) + ϑ(b, a) ≤ −M ∥ b2 − b1 ∥ for all a, b ∈ K. 

      A2 ∶  ∃ apositive constant S ≤ M such that |P0(a, b)| ≤  
S

2
‖b‖2.    

Then, 1.1 has a unique solution. 

 

Proof. Assume that a1, a2 ∈ K be two solutions to (1.1). Writting 1.1 for a2 with a = a1,  we have 

ϑ(a1, a2) + 𝑣(a2) − 𝑣(a1) + P0(ΩA1 ;  Ωδ(a1, a2)) ≥ 0.                     (2.8) 

And then for a1 with a = a2 , we have 

 

ϑ(a2, a1) + 𝑣(a1) − 𝑣(a2) + P0(Ωa2 ;  Ωδ(a2, a1)) ≥ 0.                     (2.9) 

 

By multiplying each of (2.8) and (2.9) by −1 and summing together, one can get 

 

              0 ≥  − ϑ(a1, a2) − ϑ(a2, a1) − P0(Ωa2 ;  Ωδ(a2, a1)) − P0(Ωa1 ;  Ωδ(a1, a2))  

≥ M ‖a2 − a1 ‖2 − P0(Ωa2 ;  Ωδ(a2, a1)) −  P0(Ωa1 ;  Ωδ(a1, a2)) 

                                ≥ (M − S)‖a2 − a1 ‖2. 
 

which shows that ‖a2 − a1‖2 ≤ 0 since M − S ≥ 0. Consequently, we have a1 = a2 ∈ K.                 □ 
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3.  Application 

 

An important application for theorem 2.2 is the field of partial differential inclusion problems. For 

doing so, the usual Sobolev space as W1,p (Θ)and the Banach W−1,p (Θ) is dual space of W1,p(Θ) and 

the Banach W−1,P′
(Θ) is dual space of W1,p(Θ) where 

1

p
+

1

p′ = 1,   p > 1 is a real constant, and Θ is a 

bounded domain of RN, N ≥ 1 with smooth boundary ∂Θ.  Take the partial differential inclusion  
problem: 
 

{ 0 ∈  ξ + l(x) + ∂2ψG(u),     x ∈  Θ
u = 0                                         on ∂Θ

                                                           (3.1)      

where ξ ∈ ∂P(u), G: K →  ℝ is a continuous convex function, l ∶  Ω →  ℝ is continuous function with 

compact support and K is a bounded convex subset of sobolev space of  W1,p (Θ).  

For technical reasons. Define v ∶  W0
1,P(Θ) →  ℝ  as follows:  

v(μ) ∶=  ∫ −l(x)μ(x)dx.

Θ

 

And assume that K is a non-empty, closed, bounded and convex subset of Sobolev space  W0
1,P(Θ) .  

 

Our purpose is to find at least one solution of the problem 1.1 under circumstances δ(u, v) ≔ v − u 

and Ω is surjective. 

 

Definition 3.1. Suppose that u ∈ K is a K-weak subsolution of the problem 3.1 if, 

 

                                      (G(v) − G(u) ≥ 〈−ξ − l(x), v − u〉  − 2ψ(u, v) for each v ∈ K.  
 

Set ϑ(v, u) ≔ G(u) − G(v)   and   ψ(u, v) = ‖v − u‖. Then, any v ∈ K one can obtain 

 

ϑ(v, u) − ψ(u, v) + ∫ l(x)v(x)dx − ∫ l(x)u(x)dx
Ω

+ 〈 −ξ, v − u〉  ≤  ψ(v, u).
Ω

 

Therefore, 

 

ϑ(v, u) − ψ(u, v) − 𝑣(v) + 𝑣(u) ≤ P0(u; v − u) + ψ(v, u)   for each v ∈ K. 

 

According to the above assumptions, then ϑ is ψ −monotone bi- function. As well as, in Lemma 2.1, 

we proved that (2.1) and 1.1 are equivalent under some conditions. Therefore, we must prove that ϑ 

holds all assumptions of Theorem (2.2). 

It is clear that the bi-function ψ(u, v) = ‖v − u‖ satisfies all hypotheses in theorem 2.2. As well as, 

we notice that ϑ is hemi continuous in first argument, l. s. c.  and convex in second argument, because 

G is convex and continuous function. It remains to prove that v is a convex and l. s. c. , we assume that 

u1, u2 ∈ W0
1,P(Θ), t ∈ (0,1),  

𝑣(tu1 + (1 − t)u2) = − ∫
l(x)(tu1(x) + (1 − t)u2(x))dx

Ω

 

                                                        = t[ − ∫ l(x)u1(x)dx ] + (1 − t)[− ∫ l(x)u2(x)dx 

Ω

]

Ω

 

                                                                  = t𝑣(u1) + (1 − t)𝑣(u2). 

Also, if un ⇀ u ∈ W0
1,P(Θ) 
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|𝑣(un) − 𝑣(u)| = |− ∫ l(x)(un(x) − u(x))dx
Ω

| 

                                                                      ≤ (∫  |l(x)|𝑝′
)

1

𝑝′ .
Ω

 (∫ |un(x) − u(x)|𝑝
Ω

)

1

𝑝
 

                                                                      ≤ M ‖un − u‖Lp 

≤ M ‖un − u‖ 

⇀ 0.                     
Therefore, all conditions are satisfied. 
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