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Abstract: In this paper, firstly, we prove the existence of random coincidence points for general ¢ —

weakly contraction condition under two pairs of random operators in metric spaces X , where ¢ is

continuous monotone real function. As applications related common random fixed point results are
proved and the well-posed random fixed point problem is studied.
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1. Introduction and Preliminaries: Random coincidence point theorems are stochastic
generalizations of classical coincidence point theorems. The study of random fixed point theorems was
initiated by the Prague school of probability in the 1950. Random fixed point theorems for contraction
mappings in polish space were proved by Spac¢ek [1] and Hans [2,3].

In 2014, Rashwan and Albageri [4] proved a fixed point theorem via contraction mappings of a pair
of weakly increasing mappings using an altering function in a partially ordered complete separable
metric spaces.

In 2015, Alsaidy el.at.[5] proved random common point theorem for pair of commuting mapping
defined on separable weakly compact subset of complete p-normed space.

In 2016, Rashwan and Hamnad [6] proved a unige common random fixed point theorem in the
framework of cone random metric spaces for four weakly random compatible mappings under strict
contraction condition.

In 2017, Abed el.at.[7] proved common random fixed point theorem for two random operators under
general quasi contraction condition in a complete p-normed space.

The aim of this article is to obtain random coincidence points results for two pairs of self random
mappings, when one of these pairs is generalized ¢ — weakly contractivity w.r.t the other and study

the will posed-ness of their random fixed point problem.
Throughout this article X will be metric space, ¢ # A < X be a closed , (Q,Z) be the measurable

space with >_ a sigma algebra of subsets of Q, 2% is the classes of all sub sets of Xand CB(X) is the
classes of all non-empty bounded closed subsets of X, RF (S T )the set of common random fixed

points of Sand T and RC (S T ) the set of random coincidence points of Sand T.

Definition (1.1)[8]: A mapping F : Q — 2% is called measurable (respectively, weakly measurable)
if, for any closed (respectively, open) subset B of X ,

F_l(B)={7/eQ: F(y)nB ¢¢}ez.
Definition (1.2)[9]: A mapping ¢ :Q — X is called a measurable selector of a measurable mapping

F:Q — 2" if §is measurable and 5(y) € F (y) foreach y e Q.
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Definition (1.3)[10]: A mapping h:QxX —X (or G:QxX —CB (X)) is called a random
operator if forany x € X ,h(.,x) (respectively G : QxX —CB (X))

is measurable .

Definition (1.4)[11]: A measurable mapping o :Q — A is called random fixed point of a random
operatorh :QQxX —X (or G:QxX —»CB(X) if for everyyeQ, o(y)=h(y,6())

(respectively 6 () €G (y,0(»))).

Definition (1.5)[12]: A measurable mapping ¢ :Q — A is called random coincidence point of a
random operator h :QQxX — X andG :QxX — X ifforevery y € Q, h(y,8()) =G (y,5(y))

Definition (1.6)[12]: A measurable mapping o :€2— A is called common random fixed point of a
random  operator h:QOxX —-X and G:QxX —X if for every yeQ,

o(y)=h(y,0(y)) =G (7,6(y)) Now, we define a new type of random operators

Definition (1.7): Let h,G,S,T :QxX — X be four random operators. (h,G,¢)is called
generalized ¢ — weakly contractive with respect to the pair (S,T ) ifforall x,y € X,

d (S x)T (,y))<K[M(X,y)=4(M (x,y))].....(1.1)

Where

M (c.y )= man {d (h(7x),9 (¥)).d (h(7.%),S (7.x))d (9 (.Y ).T (y,y))}

A (h(7.x)T (r.y)).d(g(7y)S (r.x)),

for each y € Q,0<k <land ¢:[0,00) —[0,0) is continuous and non-decreasing map such that ,
¢(0) =0and tIimgiﬁ(t) =0,

Definition (1.8):Let A be a nonempty subset of a metric space X and let S and T be self-mappings of
A The pair (S,T ) is said to be:

1) weakly compatible [13], if they commute at their coincidence points, i.e., STx = TSx for all x
satisfying S(x) = T(x).
2) R-weakly commuting maps [14] if for all x € A there exists R > 0 such that d(STx, TSx) <
Rd(Sx,Tx), if R =1, then the maps are called weakly commuting.
The following definition appears in [5] and [13] respectively:

Definition (1.9): A random operators h, G: Q0 X X — X are said to be R-weakly commute (or Weakly
Compatible) if h(y,.) and G(y,.) are R-weakly commute (respectively weakly compatible) for each
Yy EN.

2. Random Coincidence Theorems

Theorem (2.1):Let g #A < X , with h,G,S,T :QxA — A such that for allx,y €A, the pair
(S.T) is generalized ¢ —weakly contractive w.r.t the pair (h,G ). If
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cl (S (y,A))gg(y,A),cl (T (7,A))gh(y,A) and one of the subsets
cl (S (;/,A)),cl (T (;/,A)),cl (h(y,A)) or cl (g (;/,A)) is separable complete subspace of A .
Then RC (S,h)#¢ and RC (T ,g ) # ¢.

Proof: Letd.: Q — A be arbitrary measurable mapping.

We constrict a sequence of measurable maps o, : Q2 —> A..

since ¢l (S (7,A))=g(7.A).cl (T (».A))=h(y,A)then we can find & :Q— Asuch that
S (7.6.(»))=9(7.6,(»))for y € Qand for this function &,: Q2 — A,

we can choose another function &,:Q — A such that T (7,8,(y))=h(y,6,(»))fory eQ. By
induction, we construct sequence of measurable mappings o, :€Q2— A,such that

S (7.6 () =9 (7:600a(1)and T (#,6,0.1.(»)) =h (7.5, (7)) -...2.1)

We can define sequence of functions for y € @, {y  (»)} such that

y2n (7) = S (7/’ 52n (7)) = g (7/! 52n+1(7)) and y2n+1(7/) =T (71§2n+1(7/)) = h(y’52n+2(7/)) and
N=0212. ... 2.2)

d (Yo ()Y 20 (1)) =0 (S (7, 85 T (7, 5na (7))
< k [M (§2n (7/),52“+1(}/))_¢(M (§2n (7)!§2n+1(7)))]
=k[max{d (h (7,8, (1), 9 (7,830.1(1)),d (N (7, &0 (1),S (7, 6,0 (1),

d (9 Sn DT (728001 (1),8 (N2 00 )T (7,8501(1)),0d (9 (7,5 1 (7),S (7,5, (1) )}
~({d (0 (7650 (1), 9 (7. 5201 (1)).0d (N (7,85 (7). S (7.5, (1)),

A (97,80 a )T (1:6200()).8 (N80 DT (728302118 (9 (782021, (1.5, ()} |
=k [max{d (Y 2011 Y20 (1)).8 (Y 200 ()Y 20 ()18 (Y20 )Y 202 (1)),

d(Yon 1) Y20 ()0 (Yo () Yon (D}

~4(d (Y201 Y 20 (1)) 8 (Y 2010): Y 20 ()8 (Y 20 ()Y 200 (7)),

d (yZn—l(y)’ y2n+l(7/))1d (y2n (7/)1 y2n (7)))]

Using triangle inequality, we get

= k[max{d (y2n—1(7/)1y2n (7/)),d (y2n—1(7)a Yon (7))ad (y2n () Y2n+1(7)):
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d (Yona ()Y on (1)) +d (You ()Y 200 (1)),0 (Y50 (1), V20 (N )}

~4(d (Y201 Y20 (1)) d (Y 20100 Y 20 ()):8 (Y 20 ()Y 200 (7)),

A (Y2010 Y 20 ()49 (Yo )Y 20.0(1)) 10 (¥ 20 (), Y 20 ()]

Hence, d (Y 50 (), Y 20 () <K [A (Y 2011 Y 20 (1)) A (Y 20 (), Y 200 (1)) -
A(d (Y 2010):Y 20 (1)) +d (Y 20 (1Y 200())]

<K (Y o0 a1 Y 20 (1)) +d (Y20 ()Y 500 ()]

In general, d (an (7/)’ y2n+1(7)) <d (yZn—l(y)l Yon (7)) , where A= ﬁ <1
Therefore, d (yn (7/),yn+l(7/))31Ld (yn(y)’yn—l(y))

<2%d (Yo (1) Y ao (7))
d (yn(y), yn+1(7/))£2,”d (yo(y),yl(y))for all yeQ.

Now, we shall prove fory € Q3 {yn (;/)} is a Cauchy sequence. For this for every positive integer p
we have, for y € Q

A (Yo )Y 0ip ) <A (Vo 0 Y 00 0)) 48 (Y010 Y 020 48 (Y0200 Y 0 ()
< (ﬂ” + A +...+/1“*p’1)d (y-().y.(7)

=A"A+A+..+2°Dd (Y.(1).y.(1)
<(£5)d (-0 v, () forall yeQ.
d (Y, (7)) >0as n >wforyeQ...(23)

It follows that for y € @, {y (y)} is a Cauchy sequence .
Suppose that cl (S (;/,A)) is complete subspace of A , this implies the sequence {y , (»)} has a limit
t:Q—A.Suchthat y,(y) >t(y)asn > o,

Obtained a mapping u : Q2 — A such thatg (»,u(y)) =t (») .Thus we have
g(ru()=t@.

t)=1limy,,(») = limS (7,8, () = imT (7,8,, (7)) =limh (7,8,,..(r)) = lim g (7,6, 4())  Using
(2.2) and (1.1), we have
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d (Y, ()T (u()=d (S (.8, ().T (r.u@))

<k[max{d (h (7.5, (7)), g( u(7)))d (0 (7.8, (7)).S (76,0 (7))).d (9 (r:u (7). (r.u (7)),
d (h (7,820 (7)) T (0 )) (9 (71 ()8 (180 (1)

(max{d (h (7,0, ( () (07820 (1)):S (72820 (1)).8 (9 (U ()T (ru (7)),
d (h(r.0 (y))T( <7>))d(g(yu<y>)s<7a () 1

taking limitasn — oo, we get
d(t(y)T (yu( )))<k [max{d (t (7
d(t(r 7)d (9 (re (7))
(W) ()4 (9 (ru (7))
From g (7, u(y)) t(y) ,we have

d (¢ ()T (70 (7)) <k (t ()T (7 (7)) =4(d (t(7).T (ru ()
<k[d (t(»).T (ru(2)))

this implies, (1—k )d (t (7).T (7.u(r)))<0

)9 uG))d (t(r)t(7)).d (9GuGDT (u()),
t 7/)) —g(max{d (t .9 (y,u (7/))),d (t (7).t (;/)),
)t ()]

hence d (t (7). T (;/,u (7))) =0=>t(y)=T (;/,u (;/)) =g (y,u (;/)) ...... (2.4)

Therefore RC (T, 1) # ¢.

Since cl (T (y,A))g h(y,A),then t(y)eh(y,A). We obtained a mapping v : Q2 — A such that
h (}/,V (7/)) =t(»).....(2.5)

By using (2.4), (1.1) and (2.5), we have

d (S (7v (1)) t(1)=d (S (rv ()T (ru(7)))

<k [max {d(( ) y.u )) ((7/V(7))S(?’V(J/))),d(g(%u(ﬂf))’-r (ru ()
d(h(rv(r (7)):d (9 (7. (). (rv (7))~

p(max [{d(( (7).9 (ru(r )) (( V(7). (rv ())).d (9 (ru (7)) (ru (),
d (h(rv (7). (7 (2))d (9 (ru ()8 (v (7))

=k [max{d ( 9 (ru()d (t()S (7 (7)) ()T (ru(r).
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=K (t(7).8 (v (1)) -9(d ((1).8 (v ()]
<kd (t(r),S (rv (7))
this implies, (1—k )d (t (7).S (rv (7))) <0

d (t (7).S (7,V (7/))) =0=>t(y)=S (}/,V (}/)) =h (y,v (7/)) ....... (2.6)

Therefore RC (S,h)=¢.

Theorem(2.2):Let X ,A,S.T ,h,g,cl (S (7,A)).cl (T (».A)).cl(h(r.A)).cl(g(rA))as in
theorem (3.1.1) .If the pairs {T ,g}and {S,h} are weakly compatible( or R-weakly commuting), then
RF (S)NRF (T )NRF (h)NRF(g) is a unique singleton element.

Proof: By theorem (2.1), there exists random coincidence point

u:Q—AofTand g suchthat T ()/,u (7/)) =0 (7,u (7/))

and random coincidence point v :QQ—>A of S and h such that S (;/,v (;/)):h(y,v (7/)) for all
y e Q.

If the pairs {S,h}and {T , g} are weakly compatible, then
S (7/, h (7/,V (;/))) =h (7,8 (7/,V (;/))) and T ( 7.9 (;/,u (;/))) =g ( 7, T (;/,u (y)))from (2.6)

and (2.4), we have

S (y,t (7/)) =h(yt(»))and T(y,.t()) = g(v.t@)) ........ 2.7)
From (2.6) , (1.1) and (2.7), we have

()T (7)) =d (S (v (7)) T (rt(»))<

k [max{d (h (7 ()).9 (7t (r )))d(h(%v (7)):S (v (#))).d (g (1.t ()T (L ().
d(h(rv ()T () (o (rt ()8 (v (1)}

pmax{d (h(7v (7)).9 (.t (7))d (W (7v (7)).S (v (7))d (9 (7.t (7)) T (7.t (7))),
d (h(7v ()T (2 ()))d (9 (7 ()8 (v (7)) B
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K [max{d( ( )T (7t (7)) d (t (1) t(7)d (9 (7t ()T (7t (7). (L ()T (L ().
d(T(r (7)) -

¢(maX{d( T(Vt ))d ()t ())d (9 (7t ()T (1t (1)))d ()T (72(2))),
d(T(r (7)1

=k [ (t(7).T (.t (7)) -8(d (t ()T (rt ()]
<kd (t(y).T (nt(»)))
Thus we have  (1-k )d (t (7).T (rt (7))) <0=t(y)=T (rt(r))

From (2.7) we have t () =T (;/,t (;/)) =g (;/,t (7/)) ......... (2.8)
Thus t () is a common random fixed pointof T and g .

Again, from (2.8), (1.1) and (2.7), we get
d (S (rt())t0)=d (s (rt ()T (7t (7))
<k[M (t().t())=¢(M (L))

=k [max{d (h(;/t ) g(

A(h(rt ()T (it ))((7
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<kd (S (rt(»)t(r)

Thus we have (1—k )d (S (7.t (7))t (7)) <0=S (7.t (7)) =t (¥) ......29)
Thus t : Q2 -G (A) isacommon random fixed pointof S, T ,hand g .
Uniqueness:
Let z () be another common random fixed point of S,T ,handg , then by using (1.1), we have
d(t(}/),z(]/)) d(S (;/t )
<k[M (t() y)) ¢(M ()2 ()]
=kImax{d (h (7t (r)),9 (.2 (7))).d (A (7t (»)).S (7t (1)).d (9 (7.2 (7).T (r.2())),
):S
d (h(rt(1)8 (rt(r)d(9(rz ()T (2 (),
(

(
(Nt ()T (72 (r)d (9 (7.2 (1):S (rt )P~
pmax{d (h (7.t ()).9 (.2 (7)),
(h(7.t(»).T (.2 ())).d (9 (72 (7)).S (7t)P]
=k[max{d (t(7),z (7)).d (t(r)t (1)).d (2 (1).2 (7)).d (t ().2 (7). 0 (z (7) £ (7))}
—pmax{d (t (r),z (7)).d (t ().t (»)).d (2 ()2 (7)), (t ()2 (7). (2 ().t (2))]]

This implies (1-k )d (t(»),z (»))<0=t(y) =z (»).
Assume that{T ,g}and {S,h} are R-weakly commuting , u(y)is a random coincidence point of T
and g and v () is a random coincidence point of S and h it follows that

/4

d(T (»9(u()).9(»T (r.u()))<Rd (T (.u(»).9(ru())=0, thus

T (7. 9(ueN)=9 (T (ru@))
By similarly proof we can show that S (7, h(».v (»)))=h(7.h(r.v ()))

Hence the pairs {T ,g}and {S,h} are weakly compatible. then the same steps above we can show
that t () is a common random fixed pointof S,T ,hand g .
As a consequence, we get the following

Corollary (2.3):Let X ,A,T ,h,cl (T (7/,A)),C| (h (y,A))as in theorem (2.1), and for ally € Q,
the mappings T, h(y,.): A — A satisfies the following condition

d (T (7X).T (7,y)) <KIM (x,y)=4(M (x,y))]

where
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) = max {d (h(7x).h(7.y))d (h(7.x).T (r.x))d (h(7y)T (y,y))}

A (h(7.x)T (7.y))d (h(r.y).T (r.x))

, 0<k <3forall x,y e A.Then RC (hT ) # ¢.

Proof: Put S =T and h =g in theorem (2.1), then the corollary (2.3) follows from theorem (2.1).m

Corollary (2.4):Let X ,A,T ,h,cl (T (]/,A)),C| (h (y,A)) as in corollary (2.3). If the pair{T ,h}is

weakly compatible or (R-weakly commuting), then RF (h)NRF (T )
is a unique singlton element.

3. Random Well-posed Problem

Definition (3.1):Let (X ,d) be a metric space and T :QQxX — X a random operator. the random
fixed point problem of T is said to be well- posed if :

i. T has a unique random fixed point 6: Q2 —> X ;

ii. for any sequence {5n (;/)} of measurable mappings in X such that

limd (T (7.6,(7)):6, (7)) =0, we have limd (5, (7).6(»)=0.

Definition (3.2):Let (X ,d) be a metric space and let T be a set of a random operators in X . The
random fixed point of T is said to be well-posed if :

i. T has a unique random fixed point 6:Q— X ;

ii. for any sequence {5, ()} of measurable mappings in X such thatlimd (T (.5, (7)) 5, (7)) =0
VT €T .we have limd (8, (),5(y)) =0.

Theorem(3.3):1fX ,A,S,T ,h,g,cl (S (nA )),CI (I' (rA )),CI (h (nA )),CI @ (A )) as in
theorem (2.2), then the common random fixed point for the set of random operators

{S.,T,h,g} iswell-posed .

Proof: By theorem (2.2), the random operators S,T ,h and g have a unique common random fixed
pointt :QQ —>A. Let{§n (;/)} be a sequence of measurable mappings in A such that

limd (S (7.6, (7)), (»))=limd (T (7.5, ()).6, (7)) = limd (h (7.5, ()., (7)) =

n—oo n—oo

limd (g (7.6, (7)), (7)) =0
By the triangle inequality , (1.1) ,(2.7) and (2.8), we have
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—
—
<
S
—_~
<
N—"
S~
N—

7t(2)).9 (7.6, (7)))d (W (7t (7)).S (7.t (1)), d (9 (76, (7)).T (.
d(h(7.t(7)T (.6,(»))d (9 (7.5, (»)).S (rt () P+d (T (r.6,(7)). 5. (7))

=kd (g (7.6,(7)).9, (7/))+2k d (3, (7).t (r))+@+k)d (T (7.6,(7)).9, (7))

this implies
(1=2k)d (5, (7).t (7)) <kd (9 (7.6, (7)), 5, ())+ @+k)d (T (7.5, (7)) 5, (7))

thus we have, limd (J, (7/) ,0(7)) =0, it follows that the common random fixed point for the set of

random operators {S,T ,h, g} is well-posed.m
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