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1. Introduction 

Iseki [2] introduced BCK-algebras. The topology on   

 algebra-BCK  ecommutativ a of ideal primefuzzy  all  was introduced by [1]. A new 

algebraic structure which is a KU-algebra was introduced by [5]. In [4] a topology on the set of all 

prime ideals of a commutative KU-algebra was studied.  Now, the purpose of this paper is to define 

the concept of fuzzy spectrum and discusses some properties of this topological space over a bounded 

commutative KU-algebra. 

2. Preliminaries: 

Definition 2.1 [3,5]. Let   with a binary operation and a constant 0 , then )0,,(  is a KU -

algebra, if 

( 1ku ) 0)]())[()(  zszwws , 

( 2ku ) 00 s , 

( 3ku ) ss 0 , 

( 4ku ) 0ws  and 0 sw  implies ws  , 

( 5ku ) 0 ss ,  

For all zws ,, . 

On a KU-algebra )0,,(  , a binary relation   on   define by: 

0 uvvu .Therefore ),(   is a partially ordered set also 0 is its smallest element. Hence 

)0,,(   It meets the conditions as it comes:  zws ,,   

( \1
ku ): )()()( wszszw     

( \2
ku ): s0    

( \3
ku ): swws  ,  implies ws  , 

( \
4

ku ): ssw  . 

Theorem 2.2 [3]: Let )0,,(   be a KU-algebra, the following axioms are satisfied: 

 zws ,, , 

(1): ws  imply zszw  , 

(2): )()( zswzws  ,  zws ,, , 
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(3): wssw  ))(( . 

Definition 2.3 [4]: A KU-algebra is KU-commutative if it satisfies: wwsssw  )()( , ws,  

in . For all ws,  

ssw  )( is denoted by ws  . 

Definition 2.4 [4]: A KU-algebra is bounded if e satisfying eu  u . In this case, 

u  eu is denoted by uN . 

Definition 2.5 [3]: A subset J  of a KU-algebra )0,,(   is a KU- ideal of , if  

)( 1I  J0  

)( 2I  zws ,, , if Jzws  )(  and ,Jw  imply Jzs  . 

Theorem 2.6 [4]: Any bounded commutative KU- algebrawith respect to ),(   is a KU- lattice. 

Definition 2.7 [4]: Let   be a KU-lattice and Pr a proper ideal of . Then Pr   is a prime if 

Prvu   implies  Pru  or Prv  vu,  in . 

Theorem 2.8 [4]: In a KU-lattice , a proper ideal Pr of is a prime if PrBA  implies 

PrA  or PrB   BA,  ideals in . 

Lemma 2.9 [4]: Every maximal KU-ideal is prime. 

Lemma 2.10: Every KU-ideal is contained in a maximal KU-ideal. 

Proof.  Straightforward 

Definition 2.11 [6]: A fuzzy subset  of   is a function ]1,0[:  . Let  and   be fuzzy sets 

in a set fuzzy sets, we define:  

(1) ))()()(( sss   , 

(2) ))()()(( sss   . 

The union is defined by  ssss )},(),(max{))((   . 

The intersection is defined by  usss )},(),(min{))((   . 

More generally, for a family of fuzzy sets }:{ jj  in a set , the union and the intersection are 

defined by  

)(sup))(( ss jj

j

j  



 , )(inf))(( ss jj

j

j  



 , respectively s . 

  is a KU- lattice unless otherwise indicated. 

Definition 2.12: For any fuzzy subsets  and  in .  is defined as   

))}(),({min(sup)( wvu
wvu







,  wvu ,, .   

Definition 2.13: Let u , then tu  the fuzzy point of   is a fuzzy subset of  , which is defined 

by 









.0
)(

vu

vut
vut  , where ]1,0(t . 

Definition 2.14: Let  be a fuzzy subset of  , if 0)( u  u , then is called empty fuzzy 

set denoted by  .  

Definition 2.15: If   is a fuzzy subset of  and tu  is a fuzzy point of  . For ]1,0[t , the set 

})(:{ tuut   is a level subset of  and if tu  then  tu  .  

Definition 2.16 [3]: A fuzzy set of a KU-algebra is fuzzy KU-ideal if  

(F1)  ss),()0(  . 
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(F2)  zwswwzszs ,,)},()),((min{)(  . 

Lemma 2.17 [3]: Let  be fuzzy KU-ideal of .  vu, , if vu  , then )()( vu   . 

Definition 2.18: The fuzzy KU-ideal generated by  (  is a fuzzy subset of ) which is denoted by 

 is the intersection of all fuzzy KU-ideals  of  . (i.e)  

  ,:{  is fuzzy KU-ideal of } . 

Obviously, we get   , and if   is fuzzy KU-ideal of  , then   . 

Lemma 2.19: If  , are two fuzzy KU-ideal of , then   . 

Proof. Let u , cbu   and  , be fuzzy KU-ideals. Since  bcb   So, 

)()()( ucbb    and )()()( ucbc     by Lemma 2.17. Hence, 

))(()}(),(min{ ucb   . Therefore, ))(( u   or equivalently   . 

Conversely, ))(()}(),(min{)}}(),({min{sup)( uuuwvu wvu     . 

So   . Thus   . 

Corollary 2.20: If  , are two fuzzy KU-ideal of , then  is a fuzzy KU-ideal of . 

Lemma 2.21: If  , are two fuzzy KU-ideal of  and  is a fuzzy KU-ideal of . Then 

  , . 

Proof. If  is a fuzzy KU-ideal of  . If zws   , then )()( sz    by Lemma2.17 

Hence, 

)()}({sup)}}(),({min{sup)( szzws zwszws     . 

Therefore    .  

Definition2.22: A non-constant fuzzy KU-ideal  of a bounded commutative KU-algebra is called 

prime if )}(),(max{)( wsws     ws, . 

Definition 2.23: A non-constant fuzzy KU-ideal  of a bounded commutative KU-algebra is called 

prime if, for all fuzzy KU-ideals  and  such that   , then either   or   . 

Lemma 2.24: Let  be a fuzzy prime KU-ideal of a commutative KU-algebra . Then 

)}0()(:{   ss is a prime KU-ideal of  . 

Proof.  Let ws,  be such that )()}(),(max{)()0( swsws     or )(w . It follows 

from (F1) that )0()(  s  or )0()(  w . Hence s or w . Therefore   is a prime KU-

ideal of  .  

Corollary 2.25. Let  be a fuzzy KU-ideal of a commutative KU-algebra , then 

}1)(:{  uupr  is either pr  or a prime ideal of  . 

3. Fuzzy spectrum: 

In this section we define a topology on )(spec and we give some properties about the induced space, 

we prove this space is 1T -space and we can define a nontrivial base for this topology.  

Definition 3.1: If  is a bounded commutative KU-algebra and  is a fuzzy set of  . The set L of 

all prime fuzzy KU-ideals of  is spectrum of  and denoted by )(spec .  

(i.e.)  :{)(  specL  is fuzzy prime KU-ideal of } . And for each proper fuzzy KU-ideal  of 

 , let }:)({)(   specD . 

Notation 3.2: }:)({)(\)(   specDLL , )(\ DL is the complement of 

)(O in . 
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Clearly )()(  DD  , for all fuzzy subset of . 

Theorem 3.3: If  is a bounded KU-commutative algebra and  is a fuzzy set of 

 ,  :)({L is a fuzzy KU-ideal of } . Then the pair ),( L is a topological space, it is called 

fuzzy spectrum of . 

Proof. LSpecL  )()(  and )(L , where  is the fuzzy empty set. Thus  , . 

Now, prove that  is closed under finite intersection. 

If and  are two fuzzy ideals of  . We claim that )()()(  DDD  . Let )( D . Then 

  . Since L , we have   or   . Hence )()(  DD  . 

Conversely, if )()(  DD  , then )( D or )( D . 

   and    . Thus,   and so )( D . It follows that 

)()()(  DDD  .We get )()()(  DDD  , are equivalently, 

)())(\())()((\())(\())(\()()(  LDLDDLDLDLLL   . By 

Corollary (2.18),  is fuzzy ideal and so   )()()( LLL  . 

Finally, if }:{ jj is a collection of fuzzy ideals of  . Now, prove that )()( 



j

j

j

j DD  .  

Let )(



j

jD  , then for any j , )( jD   and so  j .Hence,  



j

j  and thus  

)(



j

jD  .Conversely, let )(



j

jD  , then  



j

j . Thus, for 

any j ,  



j

ij . Hence )( jD   for all j and so )(



j

jD  . 

This shows that )()( 



j

j

j

j DD  . By Notation (3.2), we get )()( 



j

j

j

j DD  and so 

)()( 



j

j

j

j DD  . 

Furthermore, we get 

 


)()(\)(\))(\()( 
j

j

j

j

j

jj

jj

j LDLDLDLL . 

Hence ),( L is a topological space.  

Theorem 3.4: The family ]}1,0(,:)({  tuuL t of  is a base for  . Where tu is a fuzzy 

point of  . 

Proof. u , ]1,0(t , )()(  tt uLuL and so )( tuL . 

We will prove that  is a base for  . Let  )(L , )(\)(  DLL   and  

)()( 






tu

tuDD (since )()( 



j

j

j

j DD  ). So )(\)( 






tu

tuDLL .Hence )()( 






tu

tuLL  , 

therefore  is a base for  . 

Theorem 3.5: The topological space )(SpecL  is a 
1T space. 

Proof. Let L21, and 21   . Then, either 21   or 12   . 

If 21   , then )( 12  D but )( 11  D . Moreover, )( 12  L but )( 11  L . 

If 12   , similarly we can get )( 21  L but )( 22  L . Hence, )(SpecL   is a 
1T  space. 

Lemma 3.6: Let ]1,0(, 21 tt and 21 tt  . Then )()(
21

tt uLuL   for u . 

Proof. Suppose that )(
1

tuL , then )(11
utut   . 
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But 
12 tt  then )(2 ut  and hence )(

22 tt uLu   . Therefore )()(
21

tt uLuL  . 

Lemma 3.7: If ]1,0(F and },,:))(({  jtj uFtjuLL  , then 1}:sup{ Ftt . 

Proof. Clear.     

Theorem 3.8:  The topological space )(SpecL  is a compact space. 

Proof. Since the set ]}1,0(,:)({  iuuL i is a base for this topological space, we assume that 

the set ]}1,0(,,:))(({  FtujuL itj
is a cover for L . Let }:sup{ Ftt  . By Lemma 

3.7, 1  and by Lemma (3.6) the set }:))(({ 1 juL j
is a covering for L . Now we have 

))((\))(())(( 111 



j

j

j

j

j

j uDLuLuLL . On the other hands we have 

))(())(( 11 



j

i

j

j uDuD , so ))((\ 1



j

juDLL ,  hence 


))(( 1
j

juD . Let Pr  be any 

fuzzy prime KU-ideal of  and if 









.Pr0

Pr1
)(

u

u
u  

Clearly,  is a fuzzy prime KU-ideal of  and ))(( 1



j

juD , then 


1)(
j

ju , so k  

 1)( ku , therefore 1)( ku and hence Prku . Thus, there is no any fuzzy prime KU-ideal 

consist the set }:{ ju j and then there is no fuzzy KU-ideal consist the set }:{ ju j , 

otherwise m for some fuzzy maximal ideal m by Lemma2.9 and Lemma2.10, m is fuzzy prime 

which is contradiction. Hence  }:{ ju j
, since  is bounded, then  }:{ jue j . Now 

we show that 


))(( 1

1


n

j

juD . Let ))(( 1

1


n

j

juD


 . Then 


1

1

)(
n

j

ju . So 

nj ,...,2,1 , 1)( ju , therefore nj ,...,2,1 , 1)( iu  and so 1)( iu  nj ,...,2,1 . Thus 

nj ,...,2,1 , ju and hence
 }:{ ju j

 , therefore e , which is a contradiction. 

Thus 


))(( 1

1


n

j

juD , and so 

))(())(())((\))((\ 1

1

1

1

1

1

1

1


n

j

j

n

j

j

n

j

i

n

j

j uLuDuDLuDLL


 .  

This shows that L is compact. 
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