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Abstract. This article is a study of a non-parametric estimation of the hazard rate function 

using the linear wavelet estimation for right randomly censoring data. The strategy of the 

estimation is based on the use of the wavelet projection of the father function{𝜑𝐽,𝑘(𝑥), 𝐽 =

1,2, … , 0 ≤ 𝑘 ≤ 2𝐽−1} on the subspace (𝑉𝐽) of the space𝐿2(𝑅), with the Breslow estimate of 

the cumulative function. Real data of patients suffering from liver metastases is using as an 

application. Moreover, a simulation study is used to give more clarify to the method of 

estimation. 

 

1. Introduction  

 In medical studies relating to cases of patients in terms of death or loss of follow-up which take a 

particular approach to censoring data, which is more generally adopted as survival data. One of the 

data collection operations is right randomly censoring, where a time interval is specified for the 

occurrence or waiting of the event for each individual. If the event occurs before the specified time, 

this variable is censored. If it happens after time, it is uncensored. In general, waiting for a particular 

event to occur produces a survival dataset. The specific time determents for each individual known as 

failure time. Medically, waiting for death or failure to follow up is considered to be one of those 

events associated with predetermined time to occur. Mathematically, let {𝑋𝑖}𝑖=1
𝑛  be denoted the failure 

time for each individual which is in the case of censoring is not generally possible to observe for each 

individual. Let {𝑇𝑖}𝑖=1
𝑛  be the censoring times, which each individual has a specific censoring time 

𝑇𝑖’s, then it is important that both {𝑋𝑖}𝑖=1
𝑛  and {𝑇𝑖}𝑖=1

𝑛  are non-negative, independent, identically 

distributed, with the density functions f and g and distribution functions F and G respectively. 
Because of independency property of failure and censoring times, it’s possible to assume the 

independent variables {𝑍𝑖}𝑖=1
𝑛  and the indicator function {𝛿𝑖}𝑖=1

𝑛 , such as: 𝑍𝑖 = min(𝑋𝑖, 𝑇𝑖) and 𝛿𝑖 =

1𝑋𝑖≤𝑇𝑖
. One of the topics that are of great importance in statistics is the hazard rate function which 

takes its importance in the calculation of risk rates, and this is particularly important in dealing with 

non-parametric data. Over years, researchers have been interested in estimating the hazard rate 

function in many ways, such as Kaplan-Meier, Nelson-Aalen and Kernel methods. 

 Generally, in statistics and especially in nonparametric data applications, wavelets provided new and 

useful techniques in terms of applications such as approximation and data analysis in function 

estimation problems. This is due to their effectiveness and ability to generate responses to variables 

that affect the behavior of the functions to be estimated. One of the important roles in statistics 

provided by the wavelets is estimating the probability density function, hazard rate function and 

others. A. Antoniadis and G. Gregoire [1], presented a wavelet-based method for estimating hazard 

rate and density function for right censoring survival data. D.R.M. Herrick and el at (2001) [6], 

proposed a non-linear wavelet thresholding method exploits the non-stationary variance structure of 

the wavelet Coefficients. Juan-Juan C. and el at (2011) [16], estimated the density function used non-



ICCEPS

IOP Conf. Series: Materials Science and Engineering 571 (2019) 012013

IOP Publishing

doi:10.1088/1757-899X/571/1/012013

2 

linear wavelet method for of truncated and dependent observing data. Esmaeel Shirazi and et al (2012) 

[9], they estimated the derivatives of a density function by wavelet block thresholding for randomly 

right censoring data and study the performance of various wavelet threshold estimators. Christophe 

Chesneau and T. Willer (2013), [3] estimated the cumulative function for non-parametric data and 

construct a new adaptive estimator based on a warped wavelet basis and a hard thresholding rule. H. 

Wendt and el at (2014) [13], investigated the potential of a new multifractal formalism, constructed on 

wavelet p-leader coefficients, to help discrimination between survivor and non-survivor patients. 

Maryam Farhadian and el at (2014) [18], developed a new method for estimation of hazard function 

based on combining wavelet approximation coefficients and cox regression. Mahmoud Afshari (2014) 

[17] has done some researches about density function estimator use wavelet method for estimating the 

density function for censoring data, and evaluated the mean integrated squared error.    Christophe 

Chesneau and el at (2015) [4], they presented two types of wavelet estimators for the quantile density 

function a linear wavelet dependent on projections of father wavelet functions and a nonlinear wavelet 

dependent on a hard thresholding rule. Fabienne Comte and et al (2015) [10], they estimated hazard 

function by wavelet and focused on the case where the measurement errors affect both the variable of 

interest and the censoring variable.  Chesneau and H. Doosti (2016) [5], developed a new estimator 

g(x, m) based on wavelet methods of multivariate discrete and continuous density function.  G. A. 

Schnaidt Grez, and B. Vidakovic (2017) [12], estimated the density function using empirical approach 

linear estimator based on an orthogonal projection wavelet with Kaplan-Meier estimator of randomly 

censored data, and proposed the multiresolution space index J=𝑙𝑜𝑔2(𝑁) − 𝑙𝑜𝑔2(log(𝑁)). This article 

will include, section two contains some concepts about wavelets, section three will address some facts 

about randomly right censoring data and hazard function, the estimation method Hazard function by 

wavelets include in fourth section, and section five discuses a real and simulation application to 

estimate hazard function. 

2. Wavelet 

 Wavelets are defined as mathematical functions that divide data into different frequency components 

and then study each component separately. Wavelets are characterized by accuracy in the analysis of 

functions with signals and interruptions. 

A multiresolution analysis is defined as the space: 𝐿𝟐(𝑅) = {𝑓: 𝑅 → 𝑅, ∫ |𝑓(𝑥)|2𝑑𝑥 < ∞
∞

−∞
} where: 

 {𝑉𝐽}
𝐽∈𝑍

 are a subspaces with ∪𝐽∈𝑍 𝑉𝐽 = 𝐿𝟐(𝑅) and ∩𝐽∈𝑍 𝑉𝐽 = 0. 

 The different subspace {𝑊𝐽}
𝐽∈𝑍

 𝑜𝑓 𝐿𝟐(𝑅), where 𝑊𝐽 = 𝑉𝐽+1 ⊖ 𝑉𝐽 for all  𝐽 ∈ 𝑍. 

 The sequence of functions {𝜑𝐽,𝑘(𝑥)} 𝑎𝑛𝑑 {𝜓𝐽,𝑘(𝑥)}, 0 ≤ 𝑘 ≤ 2𝐽 − 1, 𝐽 ≥ 0 are two basis for 

the subspaces 𝑉𝐽 𝑎𝑛𝑑 𝑊𝐽 respectively. 

 𝜑𝐽,𝑘(𝑥) 𝑎𝑛𝑑  𝜓𝐽,𝑘(𝑥)  are called father and mother wavelet respectively. 

 𝜑𝐽,𝑘(𝑥) =  2
𝐽

2𝜑(𝑥 − 𝑘) 𝑎𝑛𝑑 𝜓𝐽,𝑘(𝑥) =  2
𝐽

2𝜓(𝑥 − 𝑘). 

It's possible that for any function 𝑓 ∈ 𝐿𝟐(𝑅) could be approximated using 

{𝜑𝐽,𝑘(𝑥)} 𝑎𝑛𝑑 {𝜓𝐽,𝑘(𝑥)} sequences with 𝑗 = 1,2, … , 𝑘 ∈ 𝑍, 𝑗0 is an arbitrary starting scale, 

and 𝑗0 ≤ 𝑗, as follows: 

 𝑓(𝑥) = ∑ 𝜔𝜑(𝑗0, 𝑘) 𝜑𝑗0,𝑘(𝑥) + ∑ ∑ 𝜔𝜓(𝑗, 𝑘)

𝑘∈𝑍

 𝜓𝑗,𝑘(𝑥)

∞

𝑗=𝑗0𝑘

 (1) 

 

The coefficients 𝜔𝛷(𝑗0, 𝑘) and 𝜔𝜓(𝑗, 𝑘) can be expressed as:  

 𝜔𝛷(𝑗0, 𝑘) = 𝐸⟦𝜑𝑗0,𝑘(𝑥)⟧ (2) 
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 𝜔𝜓(𝑗, 𝑘) = 𝐸⟦𝜓𝑗,𝑘(𝑥)⟧ (3) 

 

From (2) and (3) the coefficients 𝜔𝜑 and 𝜔𝜓 can be written as: 

 𝜔𝜑(𝑗0, 𝑘) =
1

𝑛
∑ 𝑓(𝑥) 𝜑𝑗0,𝑘(𝑥) 𝑥  is called “Approximation” coefficients. 

 𝜔𝜓(𝑗, 𝑘) =
1

𝑛
∑ 𝑓(𝑥) 𝜓𝑗,𝑘(𝑥)  𝑥  is called “Detail” coefficients. 

From (1) can see that j is start  𝑗0 and end with infinity. Based on that, f(x) could be approximated 

from  𝑗0 to Ĵ. The value of scale index  Ĵ = 𝑙𝑜𝑔2(𝑛/𝑙𝑜𝑔10(𝑛)) and k is belong to {0,1, … , 2Ĵ − 1}. 

Therefore, equation (1) reformulate as follows: 

 𝑓(𝑥) = ∑ (
1

𝑛
∑ 𝑓(𝑥) 𝜑𝑗0,𝑘(𝑥) 

𝑥

) 𝜑𝑗0,𝑘(𝑥) + ∑ ∑ (
1

𝑛
∑ 𝑓(𝑥) 𝜓𝑗,𝑘(𝑥)  

𝑥

)

𝑘

 𝜓𝑗,𝑘(𝑥)

Ĵ

𝑗=𝑗0𝑘

 

 

(4) 

 

For periodic wavelets and constant value h, it can be defining the father and mother wavelets in [0,1] 

as: 

 
𝜑̂𝐽,𝑘(𝑥) =  ∑ 𝜑(𝑥 − ℎ)

ℎ∈𝑍

 

 

(5) 

 

 𝜓̂𝐽,𝑘(𝑥) =  ∑ 𝜓(𝑥 − ℎ)

ℎ∈𝑍

 

 

(6) 

 

Because of {𝜑̂𝐽,𝑘(𝑥)}, 0 ≤ 𝑘 ≤ 2𝐽 − 1, 𝐽 ≥ 0, is an orthogonal basis of the subspace 𝑉𝐽+1, it's possible 

to write any function 𝑓(𝑥) ∈ 𝑉𝐽+1 𝑖𝑛 [0,1] as follows: 

 
𝑓(𝑥) = ∑ ∑ 〈𝑓(𝑥), 𝜑̂𝐽,𝑘(𝑥)〉 𝜑̂𝐽,𝑘(𝑥)

2𝐽−1

𝑘=0𝐽≥0

 

 

(7) 

 

Generally, fixed 𝐽 = 𝐽 and rewrite equation (7) as a projection of  𝑓(𝑥) in 𝑉𝐽 and represented 

as: 

 𝒫 (𝑓Ĵ(𝑥)) = ∑ 〈𝑓(𝑥), 𝜑̂𝐽,𝑘(𝑥)〉

2Ĵ−1

𝑘=0

𝜑̂𝐽,𝑘(𝑥) 

 

(8) 

 

Moreover, from periodic wavelet it could be shown that‖𝒫 (𝑓Ĵ(𝑥)) − 𝑓(𝑥)‖
2

→ 0 𝑎𝑠 𝐽 → ∞ and 

‖𝒫 (𝑓Ĵ(𝑥)) − 𝑓(𝑥)‖
∞

→ 0 𝑎𝑠 𝐽 → ∞, for more details see (G. Schlossnagle, J. M. Restrepo, and G. 

K. Leaf [11]). 

3. Model-up and Hazard Rate Function 

 The data model in this paper follows the assumptions: 
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 Lifetimes: let 𝑋1, 𝑋2, … , 𝑋𝑛 be a non-negative i.i.d distributed with continuous cumulative (F) 

and density (f) functions.  

 Censoring times: let 𝐶1, 𝐶2, … , 𝐶𝑛 be non-negative i.i.d distributed with continuous 

cumulative (G) and density (g) functions. 

 Independence includes both Lifetimes and Censoring times. 

Let  𝑍𝑖 , = min{𝑋𝑖, 𝐶𝑖} , 𝑖 = 1,2, … , 𝑛  be the survival times (observed times) with the indicator function 

𝛿𝑖 = 1𝑋𝑖≤𝐶𝑖
 and 0 otherwise, so there is censoring for ith observed time if 𝛿𝑖 = 1. 

Hazard function known as failure rate function and denoted by ℎ(𝑡) 𝑜𝑟 (𝑡),  

(𝑡) =
𝑓(𝑡)

1 − 𝐹(𝑡)
 

Hazard rate function has a special form in the censored case with 𝐹(𝑡) ≤ 1 𝑎𝑛𝑑 𝐺(𝑡) ≤ 1 as: 

(𝑡) =
𝑓(𝑡) (1 − 𝐺(𝑡)) + 𝑔(𝑡) (1 − 𝐹(𝑡))

(1 − 𝐹(𝑡)) (1 − 𝐺(𝑡))
  

Now, let that,  

𝐿(𝑡) = 𝑃(𝑍𝑖 ≤ 𝑡) = 1 − 𝑃(𝑍𝑖 > 𝑡) 

= 1 − 𝑃(𝑋𝑖 > 𝑡, 𝐶𝑖 > 𝑡) 

  = (1 − 𝐹(𝑡)) (1 − 𝐺(𝑡)) 

Rewrite the hazard rate function with assuming that 𝑓∗(𝑡) = 𝑓(𝑡) (1 − 𝐺(𝑡)) + 𝑔(𝑡) (1 − 𝐹(𝑡)) and 

𝑆∗(𝑡) = 1 − 𝐿(𝑡) to be the density and survival functions as: 

 
(𝑡) =

𝑓∗(𝑡)

𝑆∗(𝑡)
 

 

(9) 

 

Before start estimating the hazard rate function, there are some details that are important to know. 

Assuming that 𝛽 = 𝑚𝑎𝑥{𝑍𝑖 , 𝑖 = 1,2, … , 𝑛} and to make sure that all observed times 𝑍𝑖 belong to [0,1], 

putting all observing in normalized form, such that 𝑍̂𝑖 =
1

𝛽
 𝑍𝑖 and {𝑍̂(𝑖), 𝛿(𝑖)} be the ranked of  {𝑍̂𝑖, 𝛿𝑖}. 

𝑇𝐹 = 𝑠𝑢𝑝{𝑧; 𝐹(𝑧) < 1} 

𝑇𝐺 = 𝑠𝑢𝑝{𝑧; 𝐺(𝑧) < 1} 

𝑇𝐿 = 𝑠𝑢𝑝{𝑡; 𝐿(𝑧) < 1} = 𝑚𝑖𝑛{𝑇𝐹 , 𝑇𝐺} 

The estimator is on the [0, 𝛽], it’s clear that 𝛽 < 𝑇𝐿 and  𝑍(𝑛) → 𝑇𝐿  𝑎𝑠 𝑛 → ∞. Depending on what was 

mentioned above, suppose that 𝛽 = 𝑍(𝑛). 

4. Estimation of the Hazard Function 
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 Our strategy to estimate hazard function follows partially estimation, at first estimate the probability 

density function denoted as(𝑓𝑝(𝑥)) and then estimate survival function denoted as(𝑆̂𝑝(𝑥) = 1 −

𝐹̂(𝑥)). 

4.1 Estimation of Density Function (𝒇̂𝒑(𝒙)) 

 In order to estimate (𝑓𝑝(𝑥)), The wavelet projection method previously referred to as (8). It will be 

followed by the creation of a hybrid between the wavelet and the Breslow estimate. 

 𝑓𝑝(𝑥) = ∑ 〈𝑓(𝑥), 𝜑̂𝐽,𝑘(𝑥)〉

2Ĵ−1

𝑘=0

𝜑̂𝐽,𝑘(𝑥) 

 

(10) 

 

Based on (10), need to find the coefficient〈𝑓(𝑥), 𝜑̂𝑗0,𝑘(𝑥)〉, so let first denoted it as €𝜑. Moreover, 

since f(.) is unknown density function, for that use the cumulative functions (cdf) F and G to collect  

€𝛷. From the observed data {𝑍𝑖, 𝛿𝑖} 𝑖 = 1,2, … , 𝑛, the joint distribution of (𝑍, 𝛿) is: 

 
𝑃(𝑍 ≤ 𝑧, 𝛿 = 1) = ∫ (1 − 𝐺(𝑥))𝑓(𝑥)𝑑𝑥

𝑧

−∞

 

 

(11) 

 

𝑃(𝑍 ≤ 𝑧, 𝛿 = 0) = ∫ 𝐺(𝑥)𝑓(𝑥)𝑑𝑥 + ∫ 𝐺(𝑧)𝑓(𝑥)𝑑𝑥
∞

𝑧

𝑧

−∞

 

 
𝑃(𝑍 ≤ 𝑧, 𝛿 = 0) = ∫ 𝐺(𝑥)𝑓(𝑥)𝑑𝑥 +

𝑧

−∞

𝐺(𝑧)(1 − 𝐹(𝑧)) 

 

(12) 

 

Dependent on equations (11) and (12): 

 
𝑓𝑍(𝑧) = 𝑓𝑋(𝑧)(1 − 𝐺𝐶(𝑧)) + 𝑔𝐶(𝑧)(1 − 𝐹𝑋(𝑧)) 

 

(13) 

 

As a result for equation (10): 

 
𝑓𝑋(𝑧) =

𝑓𝑍(𝑧)

1−𝐺𝐶(𝑧)
  −  

𝑔𝐶(𝑧)(1−𝐹𝑋(𝑧))

1−𝐺𝐶(𝑧)
  

 

(14) 

 

 From (14) it possible to express and formed  €𝜑=〈𝑓(𝑥), 𝜑𝑗0,𝑘(𝑥)〉, as 

€𝜑 = ∫ [
𝑓𝑍(𝑧)

1 − 𝐺𝐶(𝑧)
  −   

𝑔𝐶(𝑧)(1 − 𝐹𝑋(𝑧))

1 − 𝐺𝐶(𝑧)
] 

1

0

𝜑̂𝑗0,𝑘(𝑥) 𝑑(𝑥) 

 
€𝜑 = 𝐸 ⟦

𝜑̂𝑗0,𝑘(𝑍)

1 − 𝐺(𝑍)
⟧ − 𝐸 ⟦

(1 − 𝐹(𝑍))𝜑̂𝑗0,𝑘(𝑍)

1 − 𝐺(𝑍)
⟧ 

 

(15) 

 

Using the approach (𝜔𝜑(𝑗0, 𝑘) =
1

𝑛
∑ 𝑓(𝑥) 𝜑𝑗0,𝑘(𝑥) 𝑥 ) for 0 ≤ 𝐺(𝑍𝑖) < 1, 𝑖 = 1,2, … , 𝑛: 

 
€𝜑 = 𝑛−1 ∑

𝜑̂𝑗0,𝑘(𝑍𝑖)

1 − 𝐺(𝑍𝑖)

𝑛

𝑖=1
− 𝑛−1 ∑

𝐼𝛿𝑖=0(1 − 𝐹(𝑍𝑖))𝜑̂𝑗0,𝑘(𝑍𝑖)

1 − 𝐺(𝑍𝑖)

𝑛

𝑖=1
 

 

(16) 
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Now, based on the work introduced by [12] which is used Kaplan-Meier estimator,  

𝐹(𝑍̂(𝑖)) 𝑎𝑛𝑑 𝐺(𝑍̂(𝑖)) for 𝑖 = 1,2, … , 𝑛 can be estimated using Breslow estimator for survival function 

as follows: 

 

𝐹̂(𝑍̂(𝑖)) = ∑ (
𝛿(𝑟)

𝑛 − 𝑟 + 1
)  𝐸𝑋𝑃 (− (∑

𝛿(𝑠)

𝑛 − 𝑠 + 1

𝑟−1

𝑠=1

))

𝑖

𝑟=1

  (17) 

 

 𝐺(𝑍̂(𝑖)) = ∑ (
1 − 𝛿(𝑟)

𝑛 − 𝑟 + 1
)  𝐸𝑋𝑃 (− (∑

1 − 𝛿(𝑠)

𝑛 − 𝑠 + 1

𝑟−1

𝑠=1

))

𝑖

𝑟=1

  
(18) 

 

 𝜂𝑖 =
1 − 𝐼𝛿𝑖=0 (1 − 𝐹̃(𝑍̂(𝑖)))

1 − 𝐺̃(𝑍̂(𝑖))
 

 

(19) 

 

Rewrite equation (16) as follows: 

 
€𝛷 =

1

𝑛
∑ 𝜂𝑖 𝜑̂Ĵ,𝑘(𝑍̂(𝑖))

𝑛

𝑖=1

 (20) 

 

 

Finally, the estimate of density function 𝑓𝑝(𝑥) for chosen scale index ( Ĵ ) can be formed as: 

 

𝑓𝑝(𝑥) = ∑ €𝛷

2Ĵ−1

𝑘=0

𝜑̂Ĵ,𝑘(𝑍̂(𝑖)) 

 

(21) 

 

4.2   Estimation of Survival Function (𝑺̂𝒑(𝒙)) 

 It is known that one of the general formulas for the survival function is to find out from the following 

form: 

 𝑆̂𝑝(𝑥) = 1 − 𝐹̂(𝑥) (22) 

 

It is noted from the equation above (22), it is enough only to find (𝐹̂(𝑥)). based on the work 

of (F. Comte [10]), it could be found (𝐹̂(𝑥)) as follows: 

 𝐹̂(𝑥) =
∑ 𝑰(𝑋𝑖≤𝑥)

𝑛
𝑖=1

1 + 𝑛
 (23) 

 
Then, it's directly followed by: 

 

𝑆̂𝑝(𝑥) = 1 −
∑ 𝑰(𝑋𝑖≤𝑥)

𝑛
𝑖=1

1 + 𝑛
 

 

(24) 

 

Finally, the estimation of the hazard rate function will be taken the form: 

 

̂(𝑥) =
𝑓𝑝(𝑥)

𝑆̂𝑝(𝑥)
 

 

(25) 
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5. Data Application 

Two applications are processing for the proposing method, first application is simulation and the 

second data application is real application data of liver metastases. 

5.1   Simulation Study 

 Simulation data is generated using Gamma distribution for lifetimes {𝑋𝑖}𝑖=1
𝑛  with two parameters, 

shape parameter equal to 5 and scale parameter equal to 1. The independent censoring times {𝐶𝑖}𝑖=1
𝑛  

are generated using exponential distribution with one parameter equal to 6. The aim of choosing 

parameters for both distributions is to have simulation data with 50% censoring. For data generation, n 

= 100, 200 were selected. As noted in figures (1 and 2), the intermittent curve represents the wavelet 

estimation of the hazard rate and density functions. While the solid curve represents the true hazard 

rate and density functions, in the proposed estimation method, Daubechies wavelet was used with the 

wavelet level determined by (2Ĵ) and (Ĵ = 𝑙𝑜𝑔2(𝑛/𝑙𝑜𝑔10(𝑛))). In order to give more information, use 

the global error measurement, 

𝑀𝑆𝐸 = 𝑅−1 ∑ 𝑛−1 ∑ (𝜆(𝑡𝑖) − ̂𝑛,𝑟(𝑡𝑖))
2

𝑛

𝑖=1

𝑅

𝑟=1

 

Where R =200 is the number to repeat the experience and choosing the Daubechies wavelet filter 

(db50). 

 

Figure (1): Estimation of hazard rate 

function for n=200 Gamma distribution 

simulation data 

 Figure (2): Estimation of density 

function for n=200 Gamma 

distribution simulation data  
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Figure (3): Estimation of hazard rate 

function for n=100 Gamma distribution  

simulation data 

 Figure (4): Estimation of hazard rate 

function for n=100 Gamma distribution  

simulation data 

 

Table (1): MSE× 10−4 values for n=100,200 simulation datasets 

n      MSE 

100 5.27 
200 1.37 

 

5.2   liver Metastases  
 The data is of 622 patients survival times suffering from liver metastases from a colorectal primary 

tumor collected by Haupt and Mansmann (1995). The survivals times of patients collected in months 

with 259 censored samples (43.62%). Moreover, the data is available in one of R program packages 

called locfit. We estimated the hazard function of the data using the Wavelet method dependent on the 

wavelet level (Ĵ = 𝑙𝑜𝑔2(𝑛/𝑙𝑜𝑔10(𝑛))). The results were then compared with the results obtained from 

Nelson-Aalen estimate as shown in Figure (3), where the intermittent curve represents the wavelet 

estimate, while the solid curve is Nelson-Aalen estimate.  Notes that the hazard rate is in less cases is 

for less than 20 months, however, it begins growing, gradually in the times of more than 20 months. In 

order to add more information about the estimation method, the MSE was calculated and the result 

was equal to (0.363187572).   
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Figure (5): Wavelet (dotted) and Nelson-Aalen (solid) estimate of Hazard rate function for   

liver metastases data 

 

Conclusion. This research presented a method for estimating the hazard function using linear wavelet 

estimation for randomly right censoring data. Where the strategy used is two stages of estimation, 

including the first estimate of probability density function and the second is the survival function 

estimate. The method of estimation using the projection property of the father wavelets {𝛷𝐽,𝑘(𝑥)}, 0 ≤

𝑘 ≤ 2𝐽 − 1, 𝐽 ≥ 0 on the subspace 𝑉𝐽 depending on the correct selection J. The use of simulation 

showed the strength of estimation in the calculation of hazard and probability density functions 

through the use of global error rate as we noted. In addition, a real application of liver metastases from 

a colorectal primary tumor data was used.  
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