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ABSTRACT 
      We study the initial development and asymptotics of the interfaces and local solutions near the 
interfaces for the nonlinear reaction diffusion convection equation with compactly supported initial 
function. Depending on the relative strength of three competing terms such as diffusion, advection or 
absorption, the interface may shrink, expand or remain stationary. In this paper we focus only on two 
cases when the diffusion dominates and the interface expands and the other case when absorption term 
dominates and the interface shrinks. The significant methods that we used are rescaling and blow-up 
techniques.  
Keywords: nonlinear degenerate parabolic PDEs, interfaces, nonlinear scaling methods. 

1. Introduction    
Consider  the Cauchy problem(CP) for nonlinear degenerate parabolic PDEs.  

 

 
With   is negative and   are nonnegative .The initial function  
is nonnegative and continuous. Equation(1.1)is usually called a reaction diffusion convection 
equation. It is a simple and widely used model for various physical, chemical and biological 
problems involving diffusion with a source or absorption, and accompanied with additional 
convective flow as for instance in modeling filtration in porous media, transport of thermal 
energy in a plasma, flow of a chemically reacting fluid from a flat surface, evolution of 
populations etc. There has been a considerable amount of published work on this subject 
during the last five decades. For a general list of references we can refer to books [6, 10], and 
various survey articles such as [5, 8, 7, 11, 12, 9] etc. 
 The goal of this paper  is to apply the results of the general theory which developed in [1] to 
analyze the behavior of interfaces which are  separating the regions where  from the 
region where . Due to invariant equation   with respect to translation,  we shall 
investigate the case when   where  is called an interface 
function. We are interested in the short time behavior of the interface function  and local 
solution near the interface. We consider the following initial conditions in two cases, 
first the local case  
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for some   The movement of the interface and its asymptotic is directed 
depending on the competition between three factors, such as  diffusion, convection and 
reaction  and depends on the parameters and . Since the results of this paper 
are local in nature, without loss of generality we assume that  either is bounded or satisfied 
 

 
      Figure 1.Classification of the interface movement in the plane  for CP (1.1)-(1.3).  
 
some restrictions on its growth rate when  that is suitable for the results of the general 
theory. The special global case 

 
If  then the initial development for the interface and structure of local solution near the 
interface is completely understood in the cases of the reaction diffusion equation 

 
General theory of this equation and full classification of the evolution of interface and the 
local solution near the interface in CP (1.5), (1.2), (1.3) was presented  in [2,3]. 
The major obstacle to solve the interfaces development problem for nonlinear degenerate 
parabolic equations is the non-uniform asymptotic in singular perturbations theory, that the 
dominant balance as   goes to between the terms in (1.1), (1.5) on curves that close to the 
boundary of the support. The rigorous proof method developed in [3, 4] is based on a barriers 
techniques using special comparison theorem in non-smooth domains with the characteristic 
boundary curves. In this paper we apply the general theory developed in [1] to solve the 
interface problem in the cases when either diffusion or reaction are dominating forces. The 
methods used are rescaling method and blow up technique for the identification of the 
asymptotics of  solutions along the class of interface type curves, creation of the barriers and 
application of the comparison theorem in non-cylindrical or irreqular domains with boundary 
characteristic  curves. 

2. Main Results 
In the following theorem we identify the kind of parameters when diffusion dominates over 
absorption and convection, and accordingly the interface expands (see Figure 1, region (1)). 
 
Theorem 2.1. Let   are nonnegative, and 

 
Then we initially have  an expanding interface and  

 
where   
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and  depends on  and  (only see the lemma 3.2 ). For  there exists  
depending on and  such that  

 

along the curve , and   is a  shape function of  the self-similar 
solutions for (1.1), (1.4) with b=c=0 (see lemma 1) 

 
In fact, uniqueness of the solution  of the following nonlinear Ordinary DE problem is 
satisfied, 

 

 
It depends on  and concluded the following relation, 

 

 
where  is a solution of (1.1), (1.4) with  According to [3] we also have 
that  

 

where  and   is a number in , such that  

 

The following  upper and lower estimations for  are proved in [3], 

 

where . 
In the following theorem, we discuss the parameter range where absorption term dominates 
over both diffusion and advection terms (see Figure 1, region (2)). 
Theorem 2.2. Let and  one of the following cases be hold:  

(a)   
(b)   

If  is satisfied the initial condition (1.3), then the interface is shrinking  and  

 

where for arbitrary  we have  

 

along the curve  

 3. Preliminary Results 
 Lemma 3.1. [3] If  and , then the solution  of the CP (1.1), 
(1.4) has a self-similar form (2.10), where the self-similarity function  satisfies (2.12). If  
satisfies (1.3), then the solution to CP (1.1), (1.2) satisfies (2.7)-(2.9). 
 
    We identify the parameter plane in the next lemma when diffusion dominates over both 
advection and absorption forces, and the approximated solution to the nonlinear diffusion 
with reaction and convection equation coincides with the asymptotic properties of the 
classical diffusion equation. 
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Lemma 3.2.  
Let  be any solution to the problem (1.1), (1.2) and  satisfies (1.3). Let one of the 
following cases be valid: 

(a)   
(b)   
(c)   
(d)    

then   satisfies (2.9). 
Proof: Let  satisfy (1.3), then for appropriately small value  there is an  

such that  
 

The cases  (a), (c) and cases (b), (d) with  are valid. Then from results from  (Theorem 
2.1.1, 2.2.1 ; [1]) then the existence and uniqueness of the (1.1), (1.2) with 

 hold. Let  (respectively, ) be a solution to the 
problem (1.1), (1.2) with initial condition ( respectively, ). 
Because of the continuity of the solution, there exists a number  such that  

 
From (1.18),(1.19) and a comparison principle from (Theorem 2.3.1, [1]) , we have  

 
Suppose that   

 
then  satisfies the problem 

 

 
There exists a unique solution to problem (3.22), which satisfies a comparison theorem. Since 

 and   from [1] it follows that  
 

According to lemma 3.1,  is a solution to the problem (1.1), (1.2) with  
 Thus,  satisfies (3.20). If we take  where  is any 

fixed number satisfying  then from (3.23), we have 
 

If we take , then (3.23) implies  
 

Therefore (2.9) follows from (3.20), (3.24). Let consider  the cases (b) and (d) with  
Assume that  is a solution of DP   

 

 
 

The function  is defined as in (2.9) which satisfies the DP   

 

 
 

where . 
We get from [1] that there is a number  which does not depend on such that problems 
(3.25a)-( 3.25c) and (3.26a)-( 3.26c) have  unique solutions. From the concept of  finite speed 
of propagation a  may be chosen such that 
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By applying comparison principle (Theorem 2.3.1,[1]), from (3.18), (3.19) and (3.26),(3.20) 
follows. The next step we focus on the proof of convergence of the sequences .Consider 

a function  where  and  such that 
 and 

 

then we have                  
where     

 

 
 

Since we have   uniformly for  and  
 uniformly for  where  

 if   and   if  0< . 
Let  

 
 

Hence,  such that for   the comparison principle implies  
 

Let  be an arbitrary compact subset of   
We take   so large that  for . From (3.29) it follows that  , are 
uniformly bounded  sequences  in .Therefore we proved the sequences are uniformly H lder 
continuous in  and  there exist a function  such that for some subsequence  

 
we can easily check that  is a solution to the problem (1.1), (1.2) with 

 From (3.23), (3.24) and (3.20), the estimation (2.9) follows.  
Lemma 3.3.  
Let  be any solution to the problem (1.1), (1.3).  If and one of the following cases 
be valid: 

(a)   
(b)    

then  for arbitrary  (see the value of  from (2.16)) the asymptotic formula (2.17) is 
valid along   
Proof: As before, (3.18) and (3.19) follow from (1.3). Suppose the functions  solve the 
problem 

 

 
 

Applying a comparison theorem, from (3.18) and (4.19), (4.20) follows for  
 If we rescale  

 
which satisfies the DP,   

 

 
 

 in  where . 
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Now, we prove the convergence of the sequences  as  Let consider a new 
function   

                          

 

 

 
Let  be fixed and let   From (3.31) it follows that  

where 

 

 
which satisfies   uniformly for  where  

 if   and   if  . And, 

 
which satisfies     uniformly for  where  

  if   and  if  . 
Let , we have  

 
 

We also have    , if we choose  is large 
enough. Thus, as in the proof of lemma 3.1, a comparison Theorem (see [1]) implies (3.29) in 

, where the functions  and  apply in the context of the our proof. As before, from the 
interior regularity results [7] it follows that the sequence of non-negative and local bounded 
solutions is local uniform H lder continuous on the compact subsets of . Hence, the 
functions  for some subsequence  ,(3.30) is valid. It may be easily be established that 
the limit functions  are satisfied the solutions of  the problem 

, 

such that    

Let   and   be chosen such that If we take 
 and , then from (3.30) we have  

 
Since is an arbitrary number, From (3.20) and (3.32), then the desired formula (2.17) 
follows.  

4. Proof of the Main Results 
     Proof of Theorem 2.1. From lemma 3.2, then the formula (2.9) follows. Since  is any 
arbitrary value, from lemma 3.2, it follows  

 
where For  take , then we get  

 
Take sufficiently small value   Let   be a solution of the Cauchy problem (1.1), (1.4) 
with  and  replaced by  The first inequality of (3.19)  and the second  

inequality of (3.18) follow from (1.4). Suppose that  Since we have  
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then  is a suppersolution if  and since . Build a family of solutions 
 such that  

 
 is a solution of the problem  (1.1), (4.35) with  By applying the maximum 

principle, we have  and the limit  
exists. In fact,   is a solution of the following parabolic PDE 

 

in  Apply maximum principle property on the second order parabolic PDE, it 
follows that  everywhere. Therefore,  and for  then we have 

.  From (3.18), (3.19), the second inequality of (3.20) follows. Thus 
such that  

 
Which implies  

 
From (34) and (36), (2.7) follows. Finally (2.13), (2.14) follow from (2.15). 
     Proof of Theorem 2.2. Let  be an arbitrary sufficiently small value. From (1.3), then 
we get (2.18). Consider a function  

 
We estimate  in , 

 
where  is chosen such that  We have     

 where  

, 

. 

If we have  then we choose  where   is sufficiently small such that      
 

Thus we have   (respectively , ) in  
, 

  (respectively )  
Because  and  are continuous functions, and let choose   such that  

 (respectively,   ) . 
From Comparison Theorem 2.3.1 and lemma 2.3.1 (see [1]), it follows that  

 
 

which imply (2.16) and  (2.17). 
If  , then the left hand side of (4.38a), (4.38b) can be proved similarly. 
To prove the upper estimation , we consider a function  

     in   , 
where  From (4.17) it implies that for  and  there exists a 

 such that  
 

Calculating  in we have  
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, 
since   in   , we have  

 

            in   . 
Hence we choose  so small that  in Using (39) and 

Comparison Theorem 2.3.2 (see [1]) in  Then we have     
 in  

 
                                           

 
Because is an arbitrary number , from above and comparison theorem then we have  
that for all  and  such that  

  in . Since (2.17) is valid along  , so  
 

Therefore, (2.16) follows from (4.40).  
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