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Abstract: Through this article, we studied the peristaltic motion of "Hyperbolic 

Tangent" fluid in the geometry of curvature channel by using the analysis of large 

wavelength and less of Reynolds number. The matter has controlled mathematically 

by the partial differential equations of continuity, motion, heat transfer. In the study, 

we used the impact of radial magnetic force. The obtained coupled non-linear 

equations of above equations have solved by an approximation technical. Locked 

formula solutions of the stream function, axial velocity, heat function has evaluated. 

The influence of curvature is analysed and took it into account. The impact of sundry 

variables on the inflow features have plotted and explained by graphs and figures. 

Keyword: Hyperbolic tangent fluid, curved channel. 

1. Introduction  

 The peristaltic motions at less of Reynolds number and prolonged wavelength have acquired more 

interest through the last years. The attention in these inflows is in order to their many applications 

either in engineering or medical process. Such these applications implicate the pee transportation from 

urinary tract, gall from the gall bladder into the duodenum, spermatozoa in the ductus efferent of the 

male reproductive tract, ovum in the fallopian tube, lymph in the lymphatic vessel et Cetera. 

Historical brief of the peristalsis transportation is come back to T. W. [1]. In 1969, A. H. et al. [2] 

examined increase of wavelength and less of Reynolds number approaches. Various investigators in 

this area have posteriorly pressed these studies. 

It has noted from the standing studies that more of the papers that have published on the 

peristaltic motion include the flux geometries of planar channels or tubes. To the better of our 

knowing, H. Sato et al. [3] have been the first author who tested the two-dimensional peristaltic 

motion of a viscous fluid in a curvature channel. This considered geometry of the channel has possible 

implementations in physiology since more of the glandular ducts have curved; also, this type of 

channels has industrial applications. See [4, 5]  
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Various efforts have taken by thinking physiological fluids as Newtonian. A small number of 

discussions with respect to peristaltic motion of Newtonian fluids have presented in [6 -8] Further, 

some motivating studies has advanced in life fluid physiographic fluids such as blood which can 

charities' by the models of (power-law, casson and Herschel- Bulkley), chime (Williamson model ), 

loaf and white eggs through esophagus (Maxwell model) and urine contagion (couple-stress model) to 

be non-Newtonian through pumping for details , see [9-11]. Among these non- Newtonian fluids, the 

model of the hyperbolic tangent describe the inflow manner of shear thinning fluids (that is the 

viscosity of fluid will be decrease with an increasing of shear stress). Nadeem et al [12] addressed the 

peristaltic pumping of a hyperbolic tangent fluid through an asymmetric channel, for more details see 

[13]. 

Peristaltic motion with heat transfer impacts has be hard done by number of researches in order to 

attitude different suggestion in bio-medical and biomechanical sciences. The biological of temperature 

transfer in a living system contain thermal conduction in tissue, metabolic heat generation, burn 

injuries, haven, exudation of blood inflow) and hyperthermia. See [14-16] . 

The effect of magnetic force possibly helpful to ease up the blood flux in human arterial system, 

central the blood inflow velocities in surgical operations. 

Recently, Nadeem et al [17] presented mathematical model to the peristaltic transportation of 

hyperbolic tangent fluid by helping the properties of curvature of the symmetric channel. Abbas, et al. 

[18] studied the three dimensional of peristaltic motion of hyperbolic tangent fluid by using the 

features of flexible walls.  

So, there is no attempt to study the peristaltic transport of hyperbolic tangent fluid in curved 

geometrical channel by using the effects of magnetic force and heat /mass transfer. Therefore we use 

the influence of radial magnetic field in our work, besides the effect of heat and mass transfer by 

studding the impact of Brinkmann number (Br), The equations of the system have reduced subject to 

lubrication approach and then have solved by using an approximation method of perturbation analysis. 

Function formulation for the stream function,velocity, temperature have adopted. The results of the 

problem have discussed graphically. 

2. Mathematical Pattern 

Let us consider a channel of thickness (2a) coiled in a circle with center (o) and radius (R). An 

incompressible fluid of hyperbolic tangent fluid (H-T) fill out the channel. The axial and radial 

directions have denoted by  and X r respectively. Inflow in the channel has happened come back to 

expansion of peristaltic waves moving on the channel walls in the axial direction with constant speed 

C. The geometry of peristaltic walls has given by the following relation: (see fig. (1)). 

2
( , ) cos[ ( )]                                                                            ...(1)H x t a b x ct




   

Where ( , )H x t is the upper wall, ( , )H x t  is the lower wall, (b) is the wave amplitude,  is the 

wavelength and t is the time. Velocity field for such motion is [ ( , , ), ( , , ), ]v v r x t u r x t t  
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With respect to curvilinear coordinates ( , )r x .  

 

Figure 1: The relation of peristaltic walls 

In this problem, the fluid is electrically conducting and is following under the influence of radially 

varying magnetic field of the form [19]: 

0

 
                                                                                                                          ...(2)

r

RB
B e

R r



 

This type of magnetic field satisfies the Maxwell equations. The Lorentz force F in view of the 

magnetic can given by: 

2 2

0[0, - ( ) ,0]                                                                                     ...(3)
R

F J B B U
R r

  


 

Where 0B is the strength of applied magnetic field,  is the electric conductivity of fluid, J is the 

current density. 

3. Constitutive Equations 

The equations that have been controlled the shear stress of hyperbolic tangent fluid has given by: [13] 

0 (4)=[ ( )tanh ( ) ]                                                                      ...ny y   
 

     

2 2,  = trace D  and  D grad (grad )   for 0  

and  

1 1

2 2

( ) 1, equation(4) can written as:

t

i j

v v

y

y y yij ji 
  





     

 

 

0 0 0= [1 1 = [1 1      =[ tanh ( ) ]  ( )]   n( )]                         ...(5)n ny y yt y y  
    

       

Here 0 is the zero shear-rate viscosity, low index of hyperbolic tangent fluid and grad v denotes the 

gradient of the velocity vector. 

The stress components ,   and   rr xr xxt t t can obtained through the following relations: 
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0

0

[1 1 .2                                                                                             ...(6)

[1 1 ( )                                    

 n( )]

 n( )]

rr

xr

V
t y

r

U R V U
t y

r r R X r R

y



 




  



 
    

   





0

                          ...(7)

[1 1 .2( )                                                                    ...(8) n( )]xx

R U V
t y

r R X r R


 
   

  


 

Where y


is the shear rate and dots over the quantities indicate differentiation with respect to time. 

2 2 22(                ...(9)2( ) ( ) )                          
U R V U R U V

r R X r R r R X r R

V
y

r r

  
  

     

 
  

 
   

 

 

4. Basic Governing Equations 

The main equations that governing the non-Newtonian incompressible viscous named here by 

hyperbolic tangent fluid have given by the equations of (continuity, momentum and energy equations 

that described by temperature and concentration equations) as follows: 

2

1 1
{( ) }

0                                                                                                     ...(10)

( ) rr xr xx

R V

r R r r R

R U R
U r R

r R r R r R r r R r R

U V

X

V V V P

t r X r X
V t t t

 

    
    

 
  

 

    

    


   


                                                                                                                                                              ...(11)

( )
U R U U R

U
r R r R r R

U V

t r X
V  

  

  

  
   2

2

2 2

0

1
{( ) }

( ) ( )

( )                                                                                                                                  ...(12)

xx xr

R
r R

X r R X r R r

R
B U

r R

P
t t



  
 








 

 

 

The temperature equation has given by: 

2 2
2

1 2 2

1
( ) )

- ...(13)

( ) [ ] (

[  +  ]                                                                             

rr xx

R

r r R r R r r R X

R

r r R r R

U T T T
C V R T k t t

t X r

U V U

X

  
  

 

     
    

    

 

 

 

Where P is the pressure,  is the density, C  is the specific heat, 1k is the thermal conductivity, (T) 

is the fluid temperature. 

5. Methodology of the Problem  

With a view to simplify the system of governing and constitutive equations of the problem, we can 

introduce the following dimensionless transformations as follows: 
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2 2
2 0 0

2
0

0 0

2
2

0 1 0

0 0

2

0

,  ,  ,  ,   ,    ,  , ,

= ,Re ,   ,   , r ,    t = , t =
( )

0 0

,  t = ,  ,We =  

,  , 

 ,

T TX r ct U V H a P a R
x r t u v h p k

a c c a c a T

CB ab ca d c
M k P Ec t rrrr xr

a k k C T c

a a a c
t t y yxr xxxx

c c c a

 
     

 


  

 


        

    

  




  ,B r = Pr Ec,u (14)= -  ,v =    ...k

r r k x

  

  

 

Where (Re) is the Reynolds number, (F) is the volume flow rate,  is the wave number,  is the 

amplitude ratio, (k) is the curvature parameter, (Pr) is the prandtl number, (Ec) is the Eckert number, (

 ) is the stream function, (Br) is Brinkman number, ( ) is the temperature distribution, (M) is 

Hartmann number, (we) is the wiessenberg number,  is the time constant, ( 0T ) is the temperature of 

the fluid at the upper and lower parts of the channel, (u) is the axial velocity, (v) is the radial velocity. 

Using the above dimensionless quantities, the equations (10-13) become as follows: 

0                                                                                                        ...(15)
k u v

r k r k

v

x r 

 
  

 
 

2 2 2
2 2 2Re ( {( ) }

1
                                                                                                                    

) rr xr

xx

v v k v u p k
v u r k t t

t r r k x r k r r k r r k x

t
r k

 
   



    
    

        




  



        ...(16)

2

2 2 2

1
Re (

( )

{( ) } ( ) M u                                                                                                    ...(17)

) xx

xr

u u k u uv k p k p
v u t

t r r k x r k r k x r k r k r

k
r k t

r k

x
 

    
   

         

 



  



2 2
2 2

2 2

2

1
RePr ( ( ) ( )

( )                                                                                   ...(18)

) rr xx

rx

k k
v u Br t t

t r r k x r r k r r k

v u k v u
Brt

r r r k x r k

x

     
   



    
    

       

  
  

    


 

  

With non-dimensional variables, the stress components are: 

2

2[1 1                                                                                                     ...(20)

[1 1 ( )                              

 n( )]

 n( )]

rr

xr

v
t y

r

u k v u
t y

r r k x r k

we

we 






  



 
    

   
                                 ...(21)

2 [1 1 .( )                                                                      ...(22) n( )]xx

k u v
t y

r k x r k
we

 
   

  

2 2 2 2 2[ ]2 ( ) ( ) ( )                                         ...(23)
k v k

y
v u u v u

r r k x r k r r k x r k
 




   

    
       

 

The general solution of the governing equations (16-23) in the general case appears to be difficult, so 

we can reduce the analysis under the assumption of small wavelength ( ( 1)  and low Reynolds 

number approach, thus we can rewrite the previous equations under these approximations as follows: 
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2 21
{( ) } ( )M u                                                                      ...(24)

( )

0                                                                                 

xr

p k
r k t

x k r k r r k

p

r

 
 

   








2

2

                                                   ...(25)

1
0 ( )                                                                               ...(26)

2[1 1 n( )]

rx

rr

u u
Brt

r r k r r r k

v
t ywe

 



  
   
    


  


                                                                                                     ...(27)

[1 1 ( )                                                               n( )]xr

r

u u
t y

r r k
we

 
   

 
                         ...(28)

0                                                                                                                                    ...(29)

            

xxt

u u
y

r r k






 
 

                                                                                                         ...(30)

 

The corresponding dimensionless boundary conditions have given by: 

  , at  r = h = (1+ cos2 (x - t))   
2

 0 , at r = h,  = 0   at  = h                                                                                   ..(31) 

F

r
r

  




  






 

The relation between volume flow rate and time average flow rate is: [20] 

( , ) 2 ( , ) 1)                                                                                                . ..(32)F x t Q h x t    

6. Perturbed System and Perturbation Solutions 

The equations (24), (26) are not linear and their exact solutions are not easy to obtain. Therefore, we 

used the perturbation approximation technique with small values of weissenberg number in the form 

of: 

(2)

0 1

(2)

0 1

(2)

0 1

(2)

0 1

(2)

0 1

( )

 ( )

 ( ) 

 ( ) ....   

 ( )                                                                                                 

We o we

u u Weu o we

We o we

p p Wep o we

F F WeF o we

  

  

  

  

  

  

                 ...(33) 

 

6.1 Perturbed Systems 

6.1.1 Zeroth-Order System 
3 2

20 0 0 0 0

3 2

1 1
[ ) ( ) ]                         ..(34)( ).(

n k
M

k r k r k

p
r k

x r r r r

   
   

 

    
 

    
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4 3 2
2 20 0 0 0

4 3 2 2

2

0 0

2 2

1 1 1 1
0   (( ). 2  -   +  - k M ( .

( ) ( ) ( )

1
   )                                                             (35)

( )
                                ...

n
r k

k r r r k r r k r r k

r r k r

   

 

   
  

      

 


  

2 2 2
2 20 0 0 0 0 0

2 2 2 2

1 2 1
0 (1 ){( ) . . ( ) }    

( ) ( ) ( )

                                                                                                                      

Br n
r k r k r kr r r r r r

     
     

  

     

     

                 ...(36)

 

Along the corresponding boundary conditions: 

 

 

0 0
0 0

0 0
0 0

0,    

0,   

, 0,  
2

, 0,                                                           
2

....(37)

F
at r h

r

F
at r h

r


 


 





 
   




   



 

6.1.2 First-Order System 

2 33 2

0 01 1 1 1

3 2 2 3

3
20 0 1

3

(1 ) (1 ) 1 2
( )  + ( )

( )

2
 .M                                                                                      ...(38)

p n n n n
r k r k

x k r k r k r k r k r r

n k

k r r r k r

   

  

      
     

      

  
 

   

 

4 3 2

1 1 1 1

4 3 2 2

2 4 3 4 2
2 20 0 0 0 0 1 1

[
2 4 3 4 2 2

(1 ) (1 ) (1 ) 1 1 2
0 ( ) 2 ( - ) -

( )

2 1 1
( )( ( ) )  .M -  ]        ...(39)

( )

n n n n
r k

k r k r k r k r r k r k

n
r k k

r r r k r r r k r r k r

   

      

     
    

     

      
   

        

 

2 22 2 2

0 0 01 1 1 1 1

2 2 2 2 2

2 2 2
3 2 20 0 0 0 0 01

2 2 2 2

30

3

1 2
0 (1 ){2 .( . . )

( ) ( )

2 3 3
. { ( ) + ( ) ( )

( )

1
( ) }                          

( )

Br n
r k r r k

Brn
r k r k r k

r k

r r r r r r r

r r r r r r r

r

      

     




     

  

    
  



     

      

     

      




                                                                                                 ...(40)

 

With the corresponding boundary conditions: 

 

 

 

1 1
1 1

1 1
1 1

0,    

0,   .(41)

, 0,  
2

, 0,                                                                      
2

..

F
at r h

r

F
at r h

r


 


 





 
   




   



 

6.2 Perturbation Solutions  

6.2.1 Zeroth-order Solution 

If we solve the equations (35)-(36), we have the following solutions 
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2
1 1 1 13

0 4 3 2 3 1 2

2 2 2 2 2 1 2 2 2 2 2 1

2 3 1 1 2
0 2 2

2 2 2

2 1 1 2 2 3

( ) ( ) ;
2

( 1 )( 1 1 ) ( ) ( 1 )( 1 ) ( )

4 1 4 1

[ ] ( 1 )( 1 1 ) [ ] ;

n n

n n

a r
a a kr a n k r a n k r

a Br n n n k r a Br n n n k r

n n

c c Log k r a a Br n n n n Log k r





 



      

         
 

        

 

 

Where ,  (i =1,2,3,4),(j =1,2)i ja c constants can obtained by using boundary conditions (37) and 

working on "Mathematica Program" 

6.2.2 First order solution 

Substituting the Zeroth-order solutions of (42)-(45) into equations (38)-(41) and then solving the 

resulting system with the corresponding boundary conditions, we get: 

2
1 1 2 2 2 1 2 2 2 13

1 4 3 2 3 2 3 4 1 2 5

1 1

1 2

2 2 3 2

1 4 3 3 1 2 1 2 3 3

3 3 3 3 1 3 1

3 1 1 22

1 1

( ) ( ) ( )
2

( ) ;

1
(6 ( ( 3 2 ) 12 ( 1 ) ) 3 ( 3 4 )

12

1
4 4 (1 ) ( ) ( 3

(1 3 )

n n n

n

n

b r
b b kr b n k r a nn n k r a nn n k r

b n k r

c a Brn a k k a a n n n r a Br k nr

a Brnr a Brn n n k r
n n





 



 

        

 

         

    


5 6

2 1 1

2 2 4 3

1 1 5 1 5

3 ( 1 2

3 ) 3 (5 8( 1 ) 3 ) 12 ( 1 4( 1 ) ) ....................

n n k n

n n n n r r n n n r

   

             

 

Where ,  (i =1,2,3,4),(j =1,2,3,4)i jb c constants can obtained by using boundary conditions (37) and 

working on "Mathematica Program" 

7. Analysis and Discussion 

In this section, the numerical and computation results have discussed for the problem. (Mathematica) 

software is used to find out the graphs of more intersect parameters. 

7.1 Velocity profile 

Velocity equations is function of radial coordinate impact of various variables on the velocity 

distribution have shown in figures (2-8). From figure (2-a) the effect of parameter M on u has 

displayed, it is noticed that at the region (-1, 0) the velocity will be less than the magnitude of velocity 

at the region (0, 1). The effects of variables on   & Q on axial velocity u are explained in figure (3-a) 

and (4-a) respectively, we observed that the velocity will be rise up at both parts of channel with an 

increase of these variables opposite manner for the influence of axial coordinate x and is sketched in 

fig.(5-a). The performance of parameters (n) and (we) is displayed in figures (6-a) and (7), it is noticed 

that the velocity will be increase at the upper wall of channel and the case will be conversely at the 

lower part of the channel. The attitude of curvature coordinates is noted in figure (8), it is realized that 

the velocity will decrease at the upper wall and will increase at the lower part of the channel with an 

increase of small values of (k). the effectiveness of symmetry of the channel will be appear by clear 

coordinates as we observed in figures(2-b)-(6-b) respectively. 
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Figure (2-a). Effect  of (M ) on velocity u  
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Figure (2-b). Effect  of (M ) on velocity u  
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Figure (3-a). Effect  of (  ) on velocity u  
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Figure (3-b). Effect  of (  ) on velocity u  
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Figure (4-a). Effect  of (Q  ) on velocity u  
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Figure (4-b). Effect  of (Q  ) on velocity u  
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Figure (5-a). Effect  of (x) on velocity u  
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Figure (5-b). Effect  of (x) on velocity u  
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7.2 T

empera

ture 

profile 

Temper

ature's 
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ns are 

functio

n of (r). 

Temper

ature 

distribu

tions 

have 

sketche

d in 

figures 

(9-15) 

to study the influences of the variables , , , ,   and QM Br n k we with fixed values of x= (0.2) and t= 

(0.05). Figure (9-a) and (10) are drown to study the effect of M and k on temperature distributions

,we see that the temperature decrease with an increase of above parameters. Similar behavior for the 

influence of n on temperature and it is shown in figure (11-a). Figures (12-a) and (13-a) display the 

effect of Br and , we noted that the temperature will be excess with an increase of these variables. 

Similarly the effect of Q on temperature profile and it is seen in figure (14-a). It has observed that 

graphs of temperature is symmetric with a large value of curvature coordinates (k) as we noticed in the 

figures (9-b)-(14-b). 

In figure (15-a) the impact of (we) on temperature have given, we noticed that the magnitude of 

temperature will be small with small values of (k) and at large values of k, the temperature will be 

clearly small in the upper wall and it starts to increase in the lower part of channel as shown in figure 

(15-b). 
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Figure (9-a). Effect  of (M ) on temperature  
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Figure (9-b). Effect  of (M ) on temperature  
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Figure (6-a). Effect  of ( n  ) on velocity u  
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Figure (6-b). Effect  of ( n  ) on velocity u  
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Figure (7). Effect  of (we  ) on velocity u  
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Figure (8). Effect  of ( k  ) on velocity u  
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Figure (10-a). Effect  of (k ) on temperature  
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Figure (10-b). Effect  of (k ) on temperature  
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Figure (11-a). Effect  of (n ) on temperature  
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Figure (11-b). Effect  of (n ) on temperature  
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Figure (12-a). Effect  of ( Br ) on temperature  
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Figure (12-b). Effect  of ( Br ) on temperature  
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Figure (13-a). Effect  of ( ) on temperature  
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Figure (14-a). Effect  of (Q ) on temperature  
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Figure (14-b). Effect  of (Q ) on temperature  
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Figure (15-a). Effect  of (we ) on temperature  
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Figure (15-b). Effect  of (we ) on temperature  
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7.3 Phenomenon of Trapping 

The influence of sundry variables like , , , , ,   and QM t n we k on trapping can show over figures (16-

22). Figure (16), display that the size of trapped bolus decrease with an increase of M in the two parts 

of channel. Figure (17) has plotted for the impact of ( ) on trapping. It can be seen that the bolus will 

be change have taken elongation in their appearance with an increase of . Similarly action for the 

effect of (t) on trapping bolus and is shown in figure (18). Figures (19) and (20) are plotted for the 

behavior of n and we and it is observed rameters, we not that the bolus have been less in the two walls 

of channel, viscous and Newtonian fluid (we=0, n=0) is greater than the bolus in the Hyperbolic 

tangent fluid ( 0, 0)we n  . The effect of k on trapping is noticed in figure (21), it is noted that the 

bolus is appeared to be shrinkable with high values of k. figure (22), have offered the influence of Q, it 

is seen that the bolus are disparate in size in the both sides of walls at the small values of Q, with an 

increase of that parameter, we remarked that the bolus will be less in number and size. In the all above 

effects of parameters, we noticed that bolus would be symmetric at the both parts of channel. 

   
Figure(16): effect of (M) on stream line for 

(a)M = 1, (b) M = 1.3,  (c) M = 1.5   
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Figure(17): effect of ( ) on stream line for 

(a) = 0.1, (b) = 0.2,  (c) = 0.3      

   
Figure(18): effect of ( t ) on stream line for 

(a) = 0.5, (b) = 1.5,  (c) = 1.7 t t t  

   
Figure(19): effect of ( n ) on stream line for 

(a) = 0.1, (b) n = 0.5,  (c) = 0.7 n n  

   
Figure(20): effect of (we ) on stream line for 

(a) = 0.0001, (b) we = 0.001,  (c) we = 0.003we  
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Figure(21): effect of ( k ) on stream line for 

(a) = 1.5, (b) k = 1.6,  (c) k = 1.7k  

   
Figure(22): effect of (Q ) on stream line for 

(a)Q = 0.5, (b) Q = 1,  (c) Q = 1.5  

                    Figures (16-22) Effects of parameters on stream line for 

                0.2, 0.05, 1, 0.001, 0.5, 2, 1.5t M we n k Q         

 

8. Produced Notes 

This problem deals with the common impacts of radial magnetic force and heat transfer on the 

peristaltic transport of incompressible hyperbolic tangent in curvature channel. We got the 

approximate solutions of the problem under the assumptions of large wavelength and less of Reynolds 

number and the results of non-linear coupled equations are be solved by using perturbation analysis. 

The numerical commutations were analyzed for different values of variables namely Hartmann 

number (M), amplitude ratio  , curvature parameter k, time flow rate Q, parameters of hyperbolic 

tangent fluid (we and n) and Brinkman number (Br). So through our work we noticed the following 

observations: 

1. The velocity of the fluid has increased with an increase of   and Q in all regions of channel, 

reverse case is satisfied for an increase of x. 

2. The velocity of the using fluid will be increased at the upper part of the channel and decreased 

at the lower part of channel with an increase of M, (we) and (n). Conversely, situation has 

observed for an increase of k. 

3. The graph of velocity distribution will be more symmetrical with more increasing values of 

curvature variable k at most of parameters. 

4. The graph of velocity distribution will be wanes at the center of the channel with an increase 

of (M), (we) and (n) at more high values of (k). 
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5. The temperature of the fluid is an increasing function of ,  and QBr . Opposite case is an 

increasing of , ,   and weM n k . 

6. The temperature of fluid which is used in this problem is observed to be low in comparison 

with viscous fluid(we=0, n=0) 

7. The graphic of temperature distribution is noted to be symmetric at most of variables with 

more rising values of k. 

8. The size of the trapping bolus will be increased with an increase of ,t , adverse status is 

obtained for an increase of , ,   and weM n k . 

9. The shape of the bolus is seen to be symmetric at both sides of channel with an increasing of 

, , , ,   and kM t n we . 

10. The bolus is observed to be dissimilar at small values of Q in the both walls of channel, and 

these bolus is started to be more small in size and numbered with more increasing values of Q. 

11. If we put M=0, in our problem we obtained a study paper of S. Nadeem and E. N. Maraj. [17]. 
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