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Abstract. The article provides an analysis of the features of operation of stationary lead-acid 

rechargeable batteries at power plants as a source of power for operational DC circuits. The 

aim of the study was to compare widely used lead-acid battery systems with free electrolyte 

with dryfit and AGM technologies. The result of the study is to determine the significant 

advantages of sealed batteries in the implementation of gas evolution and recombination 

processes. On the basis of the conducted research and the revealed modern trend in the 

implementation of hardware for automation and telemechanics based on low-maintenance and 

maintenance-free equipment, conclusions have been made about the feasibility of using sealed 

lead-acid batteries as sources of operational direct current at power distribution facilities. 

Introduction 

At present, the highest requirements are placed on the quality and reliability of equipment used at 

power distribution facilities. To power the operational circuits of the protection, automation and alarm 

relay, electromagnets for switching off and on switching devices, operational direct current is used 

predominantly. The current source is mainly the batteries of the lead-acid system manufactured 

according to the classical technology with liquid electrolyte, which is predetermined by the breadth of 

the model range, relative simplicity of production and unpretentiousness to operating conditions [1, 2]. 

The peculiarities of operation of lead-acid batteries with liquid electrolyte should include the need 

to adjust its level and density and a significant amount of gas evolution during charging, which makes 

it necessary to install the battery in a separate capital room equipped with forced supply and exhaust 

ventilation [1-8].  

 

Study of the features of operation of stationary lead-acid batteries 

Lead acid battery (LAB) as any other chemical source of current is a system of unstable 

equilibrium. All processes occurring in it are associated with its slow "destruction", expressed in 

irreversible loss of capacity. 

In order for the processes of "destruction" to proceed with a characteristic speed for this type of 

batteries and their mode of operation, i.e. in order for the battery life to be predictable, it is necessary 
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to ensure the correct operating conditions as well as charge / discharge parameters, which must 

comply with the modes permitted by the manufacturer [9, 10]. 

A promising solution to this problem is the use of sealed LAB with their installation in a capital 

building with natural ventilation. At the same time, the use of modern technologies allows placing 

LAB in a separate room, as well as in a room with electrical and switching equipment. 

Sealed LAB have made a breakthrough in the production technology of lead batteries for industrial 

use. Thus, in 1957, a battery with a bound electrolyte was developed, the so-called “non-spillable” 

battery, and the technology itself was named dryfit and was patented. The idea of creating a non-

spinning battery is based on the principle of thickening the electrolyte to a jelly-like state and sealing 

the internal volume with an overpressure valve, which is installed in the filling hole to provide one-

way communication with the external environment to release a small amount of gas. Later in the 70s 

of the last century, another electrolyte binding technology was invented by impregnating separators 

with good capillary properties. This technology is called AGM (from Absorbent Glass Mat), and glass 

fiber sheets are used as separators [10, 11]. 

The common property of all sealed LAB is that there is no need to dilute the electrolyte during their 

operation. Overpressure valves are installed during production and do not disassemble during the 

entire service life of the batteries. Another important quality of the batteries of the sealed design is low 

gas emission, which significantly softens the requirements for the rate of air exchange at the location 

of the battery. 

However, when building industrial power installations with a high power battery, it is impossible 

not to take into account the fact of the occurrence of a side reaction of electrolysis of water when 

charging stationary lead-acid rechargeable batteries. 

It is known that when a recharge current flows through a battery, electrolysis of water produces 

gaseous oxygen (at the positive electrode) and gaseous hydrogen (at the negative electrode). If no 

special measures are taken, then both gases are released into the surrounding space of the battery in an 

amount determined by the Faraday electrolysis law, which in terms of 1 Ampere-hour of electricity is 

0.037 g or 0.418 l of H2 (hydrogen) and 0.299 g or 0.209 l of O2 (oxygen) as a result of decomposition 

of 0.336 g of H2O (water). Hydrogen is a potential threat: it is an explosive combustible gas whose 

mixture with air becomes dangerous by fire, starting with a 4 percent concentration by volume [10, 

11]. 

To remove hydrogen, it is necessary to ensure adequate air exchange of the location of the battery 

due to natural or forced ventilation. The air exchange rate is determined by the standard GOST R 

MEK 62485-2-2011 [5]. 

In a sealed LAB in a bound electrolyte, a mechanism of internal recombination of gases with the 

formation of water is implemented. The conditions for the reaction are the presence of recombination 

channels: microcracks in the gel or electrolyte-free pores in the glass fiber separator, through which 

gaseous oxygen is delivered to the negative electrode, where it enters an electrochemical reaction with 

hydrogen, accompanied by heat evolution H2 + ½O2 → H2O + heat. 

The recombination reaction coefficient in systems with a bound electrolyte is 98–99%, which 

corresponds to an approximately 100-fold reduction in gas evolution compared with classical 

structures in which the electrolyte is not bound [10, 12]. 

In accordance with GOST R MEK 62485-2-2011, the minimum air exchange rate of the location of 

the battery is calculated by the formula: 

Q = 0.05 ∙ n ∙ 𝐼𝑔𝑎𝑠 ∙ 𝐶rt ∙ 10
−3, [m

3
/h] 

where 𝐼𝑔𝑎𝑠 – gassing current for sustained or accelerated charge [mA / Ah], 

𝐶rt – capacity of 10-hour discharge of lead-acid elements to a voltage of 1.8 V at a temperature of 

20 ° C, 

n – number of cells in the battery. 

The values of the gas emission current 𝐼𝑔𝑎𝑠 for battery cells depending on the charge mode and the 

state of the electrolyte are presented in Table 1. 
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Table 1. 

Values of gas evolution 𝐼газ  for LAB with liquid electrolyte (antimony content <3%) and sealed 

LAB (with overpressure valve) depending on the charge mode 

Charge mode 
Gassing current 𝐼𝑔𝑎𝑠, мА/Аh 

LAB with liquid electrolyte Sealed LAB 

Charge support 5 1 

Accelerated charge 20 8 

 

The minimum area of the input and output vents for natural ventilation is calculated by the formula: 

А ≥ 28 ∙ Q, [sm
2
]. 

In the immediate vicinity of the battery, it is necessary to observe a safe air gap, where there should 

be no spark-forming or hot devices. The required size of the exclusion zone, measured by the straight 

distance from the battery valves, depends on the type and capacity and is calculated by the formula:  

𝑑 = 28.8√𝐼𝑔𝑎𝑠
3 ∙ √𝐶rt

3
, [mm]. 

For a monoblock battery, the gas output is determined by the number of elements connected in 

series in a single housing, connected by a single ventilation system or through a tube. When 

calculating the safety distance, the value 𝐶rt is determined by multiplying the capacity of the 

monoblock by the number of elements in it. 

Based on the above formulas, it can be established that for LAB with internal recombination of gas 

with a capacity of up to 1000 Ah the size of a safe air gap in any charge mode does not exceed 1 

meter. Thus, the creation of an exclusion zone of 1 meter in natural ventilation will guarantee the safe 

operation of sealed LAB, which allows them to be installed in a common room with electrical and 

switching equipment [9, 10]. 

 

Conclusion 

In the industry of automation and telemechanics at the objects of electricity distribution, to a greater or 

lesser extent, batteries are produced in all three of the above-listed technologies. In this case, the vast 

majority of batteries used as a source of operating direct current, have a classic design with free 

electrolyte. The current trend in the development of technical equipment for automation and remote 

control involves a gradual transition to low-maintenance and maintenance-free equipment [10-12, 

etc.]. To achieve this goal, it is advisable to use current sources, based on sealed lead-acid batteries, 

which will reduce operating costs while maintaining the required level of reliability. 
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