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Abstract. Technology for producing syntactic carbon foams by the method of pitches 

carbonization under pressure is proposed. The components and optimal regime parameters for 

producing the foams with given thermophysical and strength characteristics are determined. 

The foams structure was studied using scanning electron microscopy. 

 
 

1. Introduction 
The technology for producing heat-conducting syntactic carbon foams obtained by the method of pitch 

carbonization under pressure is based on using the phenomenon of pore formation upon the release of 

volatile substances from coal tar or oil pitches their release is complicated by the application of 

external pressure. 

2. Body text 

The technological process consists of several stages. At the initial stage, the components are mixed. If 

it is necessary to work with pitches that have a mesophase yield of less than 25 wt. % the mesophase 

microspheres of PMUG brand or analogues obtained by heat treatment of the original pitch up to a 

temperature of the mesophase formation (400-500°С) with subsequent extraction of the soluble part in 

toluene can be added to increase the thermal conductivity of the resulting product. The mesophase 

microspheres should be added to increase the mesophase yield from the pitch up to 40-50 wt. %. 

Carbon micro- and nanoparticles (fine-grained soot, carbon nanotubes, natural graphite, graphene 

nanoparticles) can be added into the original pitch in an amount of 0.1-5.0 wt. % to increase product 

strength. When the loading is more than 1 kg, the components are mixed in a mixing machine with the 

Z-shaped blades at a temperature of 15-20°С higher than the softening temperature of the original 

pitch. When the loading is less than 1 kg, the mixing can be performed in a toluene solution.  

The initial pitch and solvent (toluene) are loaded into a three-necked round-bottomed flask in an 

amount of 100 ml of solvent per 15 g of pitch the mixture is stirred by an anchor stirrer and boiled 

using a backflow condenser for 60 minutes. Then the mixture is cooled to a temperature of 40°С, and 

the solvent is removed by distillation under vacuum using a rotary evaporator followed by drying 

under vacuum using a rotary evaporator at a residual pressure of not more than 10 mm Hg and a 

temperature of 120°С for 60 minutes. After mixing, the mass is cooled to a temperature of 25°С and 

crushed to a particle size of less than 250 µm in a vibrating mill or hammer crusher.  
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In the second stage, the low-temperature carbonization under pressure is carried out. The moulding 

material of the crushed pitch with additives is placed in a cylindrical form made of carbon steel with a 

0.5 mm thickness with one weld seam along the generatrix and one weld seam along the base. The 

form is filled not more than for 60% of the height. The form is placed in an autoclave with a limiting 

heating temperature of at least 600°С and a maximum attainable pressure of at least 16 MPa. Heating 

and pressure increase is carried out according to the mode shown in Figure 1. The pressure and 

temperature in the autoclave are controlled and regulated in close proximity to the container with 

samples. 

  

a) b) 

Figure 1. Diagram of pressure increase (a) and temperature (b) for low-temperature carbonization of 

workpieces of foam under pressure (pressure relieve – after 12 hours, cooling - natural)  

 

After cooling of the autoclave working area to a temperature of 450°С, the pressure can be reduced 

to atmospheric, for this, capture of toxic impurities is provided in the autoclave system (cold trap and 

trap with benzene). After cooling of the autoclave working area to a temperature of 150°С it is 

unloaded, containers with samples are taken out and cut.  

At the third stage, carbonization is carried out. The obtained samples of the “green” foam were 

wrapped in a double layer of paper, placed in a steel container, covered by a 5-10 cm layer of broken 

graphite with a diameter of about 250 μm on top of which a 0.5-1.5 cm layer of high-temperature coal 

tar pitch with a diameter of 2.5 μm was poured it was covered with a steel lid and placed in a muffle 

furnace, equipped with a thermoregulator with the ability to control the speed and temperature of 

heating, as well as the exposure time. Samples in the container are heated at a rate of 2.5±0.5°С/min to 

a temperature of 900°С with exposure at the final temperature for 120 min after which the furnace is 

turned off and cooled to a temperature of 60±40°С for 12 hours. Samples are extracted, and overall 

dimensions, shrinkage, apparent density, ultimate compressive strength, and thermal conductivity 

coefficient are controlled. The obtained samples are placed in graphite crucibles with lids the filling (a 

scrap of artificial graphite production crushed to a particle size of less than 0.25 mm) is filled in. The 

crucibles are placed in an EVP-2500 (ЭВП-2500) vacuum furnace the working medium is pumped out 

to a residual pressure level of less than 1 mm Hg (it is desired to fill the furnace with argon to displace 

air and then pump it out to a residual argon pressure of less than 1 mm Hg). The furnace is heated for 

8 hours to a temperature of 2100°С the samples are exposed for 2 hours then naturally cooled. 

At the fourth stage, the graphitization process is carried out. The resulting samples are placed in 

graphite crucibles with lids the filling (a scrap of artificial graphite production crushed to a particle 

size of less than 0.25 mm) is filled in. The crucibles are placed in a graphitization furnace (such as 

Acheson or Tamman type) and heated to a temperature of 2700°С with exposure at the final 

temperature of at least 60 minutes. 

In the next stage, the pyrocompaction is carried out. The obtained samples of graphitized foam are 

loaded into the pyrocompaction furnace chamber the furnace is sealed, blown through by argon, and 
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after that, the samples are heated and kept at a temperature of at least 1100°С and the methane 

pressure of 8-12 mm Hg for 20-120 hours. 

The final stage is the mechanical treatment of the obtained workpieces (cutting, drilling, milling, 

and grinding at low feed rates by a tool with a Mohs hardness of more than 6). 

Carbon foams were obtained in an industrial autoclave by pitch impregnation of carbon-carbon 

composite materials at a pressure of 8.0 MPa and a temperature of 500°С, followed by carbonization 

up to a temperature of 2200°С. The resulting foam had a non-uniform macrostructure: the outer layer 

was a material with a density of about 1.2 g/cm
3
 and porosity observable with the naked eye, the inner 

layer had a density of about 0.7 g/cm
3
 and distinct porosity. 

Figure 2 shows the SEM images of the outer (dense) layer. It can be seen that the porosity structure 

of the foam is non-uniform – there are small channel pores and large cracks in the material structure. 

In terms of the structure of the pore walls, the material is quite homogeneous and has a graphite-like 

structure of a spherulitic type with a spherulites size of about 20 μm. The sections show that 

spherulites are graphite-like carbon material at the stage of pre-graphitization.  

 

 

 

a) b) 

 

 

c) d) 
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e) f) 

 

 

g) h) 

Figure 2. SEM images of carbon foams obtained by carbonization under pressure (outer surface of the 

sample)  

 

Based on the analysis of 156 fields, a macropore size distribution was plotted (figure 3). The data 

on the figure shows that the pores are mostly small (up to 17.6 μm) this, apparently, is the reason for 

the main porosity of the material. The average pore size is 12.24 μm at a high standard deviation for 

the sample (12.68 μm) which further confirms the polymodal nature of the distribution.  
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Figure 3. Macropores size distribution for carbon foams obtained by carbonization under pressure 

(outer surface of the sample): 1; 2; 3; 4; 5; 6, 7, 8, 9 – variation ranges of pore sizes respectively 1.02 – 

9.32; 9.32 – 17.62; 17.62 – 25.92; 25.92 – 34.22; 50.82 – 59.12; 59.12 – 67.42; 34.42 - 42.52; 67.42 – 

75.72; 42.52 - 50.82 μm 

 

The internal porous part of the material is a foamy structure visible to the naked eye. Studies by the 

SEM method showed that the cuts and chips of the cell surface additionally contain canal-like 

macropores (figure 4) with a circular or elliptical section. In the interpore space, graphite has a striated 

structure and contains a large number of cracks with a width in the range of tens of nanometers. The 

secondary deposits of isometric particles are on the cell surface which indicates the carbon formation 

through the gas phase including due to volatile substances of the pitch. 

 
 

a) b) 
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c) d) 

Figure 4. SEM images of carbon foams obtained by carbonization under pressure (inner part of the 

sample) 

 

Based on the analysis of 128 fields, the macropores size distribution was plotted (figure 5). The 

data on the figure shows that the pores in this part of the sample are larger (the main part is in the rage 

of 10-70 μm) this is the reason for the main porosity of the material. The pore diameter distribution is 

noticeable already at an average pore size of 41.79 μm at a standard deviation for a sample of 31.53 

μm, which confirms the homogeneous nature of the material porosity.  

 
Figure 5. Macropores size distribution for carbon foams obtained by carbonization under pressure 

(inner part of the sample): 1; 2; 3; 4; 5; 6 – variation ranges of pore sizes respectively 10.80 – 35.84; 

38.84 – 60.88; 60.88 – 85.92; 85.92 – 110.96; 110.96 – 136.00; > 136.00 μm 

 

It should be noted that the wide pore size distribution does not allow classifying this class of carbon 

foams as syntactic. 

Further, the experiments on carbonization under pressure of oil pyrolysis pitch with the softening 

temperature of 140°С at a pressure of 20 MPa and a temperature of 600°С were carried out, then the 
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samples were carbonized up to a temperature of 900°С processed in an electrovacuum furnace at 

2100°С and graphitized in an Acheson type furnace up to a temperature of 2800°С. 

Figure 6 shows the structure of the samples obtained by the SEM method. It can be seen that 

samples have pores of the approximately spherical cross-section with a narrow size distribution in the 

range of 250-300 μm, there are also inclusions of small spherulitic agglomerates of particles inside the 

pores which indicates the occurrence of secondary pyrolytic processes in the gas phase (soot formation 

and etc.). Moreover, the formed agglomerates have an isotropic structure and unexpressed texture 

despite the high final temperature of heat treatment.  

 

 

 

a) b) 

 

 

c) d) 

 
 

e) f) 

Figure 6. SEM images of carbon foams obtained by carbonization under pressure of oil pyrolysis 

pitch  
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The graphitized part of the sample has an isotropic structure, which indicates an insufficient 

content of the mesophase in the material. The characteristic graphite texture is expressed explicitly. 

The 10 wt. % of mesophase microspheres were added to the initial pitch and the material was 

processed in similar conditions to increase the content of the mesophase in the material. 

Figure 7 shows the microstructure images of the obtained graphitized foam. It can be seen that 

pores have approximately the same character, but the structure of the interpore walls differs sharply 

from the previous material – walls have the high degree of graphitization with the striated structure of 

graphite (figure 7, c and d) there are also secondary deposits (figure 7 a and b), however, mainly walls 

have more pronounced graphite nature. In some places, cracks and pores of the elongated shape are 

observed (figure 7 e and f), which is possibly related to the thermal stresses arising at the low-

temperature stage of the process that is conditioned by the filler presence. The presence of cracks can 

lead to a noticeable decrease in material properties.  

The samples were also obtained on the basis of a special oil pitch with a mesophase content of 

more than 80 wt. % to decrease the resulting thermal stresses. The samples were obtained according to 

a similar scheme. 

 

  

a) b) 

 

 

c) d) 
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e) f) 

Figure 7. SEM images of carbon foams obtained by carbonization under pressure of oil pyrolysis 

pitch with the addition of 10 wt. % of mesophase microspheres 

 

Figure 8 shows the images of the material microstructure. It can be seen that material has a 

structure with the high degree of anisotropy of the graphite component similar to the previous one. 

The presence of cracks in the structure of the interpore walls which are visually comparable with those 

for the samples with mesophase microspheres can be seen.  

 

 

a) b) 
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c) d) 

Figure 8. SEM images of carbon foams obtained by carbonization under pressure of special 

mesophase pitch  

 

At the same time, studies of mechanical and thermophysical properties have shown that the 

properties of the given group of samples have a higher level which indicates the slightly higher degree 

of perfection of the graphite obtained using this technology.  

 

3. Conclusions 

Thus, the studies showed that the technology for producing foams by carbonization under pressure 

provides a fairly high level of thermophysical (heat-conducting) and physical and mechanical 

properties of products.  

References 

[1] Tikhomirov V K 1975 Foams. Theory and practice of their production and destruction (Moscow: 

Khimiya Publ) pp 11-15 

[2] Galimov E R, Fedyaev V L, Galimova N Ya, Takhaviev M S and Siraev A R 2017 Mathematical 

modeling of processes occurring during deposition of sprayed particles of polymeric powder 

Journal of Physics: Conf. Series vol 789 012007 

[3] Salosina M O 2016 The thermal conditions of the solar probe taking into account the impact of 

high-speed dust particles (Moscow: Proceedings of MAI) p 86 

[4] Shutov F A Syntactic polymer foams 1986 Advances in Polymer Science рр 63–123 

[5] Inagaki M, Qiu J and Guo Q 2015 Review Carbon foam: Preparation and application Carbon Vol 

87 pp128-52 

[6] Anghelescu M S 2009 Integrated Engineering Thermal and Mechanical Analysis of Carbon Foam 

Ph.D. 122 p 

[7] Chen Y, Chen B, Shi X, Xu H, Shang W, Yuan Y and Xiao L 2008 Preparation and 

electrochemical properties of pitch-based carbon foam as current collectors for lead acid batteries 

Electrochimica Acta vol 53 pp 2245-49 

[8] Kashapov N F, Luchkin G S and Luchkin A G 2010 Vacuum technologies for the application of 

functional coatings “Vestnik” of Kazan State Technological University No 2 pp 340-45 

[9] Galimov E R, Shveyov A I, Shveyov I A, Lysanov D M and Galimova N Ya 2016 Development of 

combined technologies and multifunctional equipment for application of polymer powder coatings 

International Journal of Applied Engineering Research vol 11 No 3 pp 1583-89 



ISTC-IETEM

IOP Conf. Series: Materials Science and Engineering 570 (2019) 012022

IOP Publishing

doi:10.1088/1757-899X/570/1/012022

11

[10] Samoylov V M, Danilov E A, Galimov E R, Fedyaev V L, Galimova N Ya and Orlov M A 2017 

Production of thermally conductive carbon foams and their application in automobile transport IOP 

Conf. Series: Materials Science and Engineering vol 240 012062 

[11] Galimov E R, Fedyaev V L, Galimova N Ya, Gimranov I R and Marat M M 2017 Formation of 

polymeric powder coatings IOP Conf. Series: Materials Science and Engineering vol 240 012014 

[12] Galimov E R, Fedyaev V L, Galimova N Ya, Gimranov I R and Siraev A R 2017 Dynamics of 

coalescence and spreading of liquid polymeric particles during coating formation Journal of 

Physics: Conf. Series vol 789 012006 

[13] Shafigullin L N, Shafigullina G R, Sarimov D R and Romanova N V 2017 Analysis of carbon 

plastics destruction causes based on epoxy binding Turkish online journal of design art and 

communication vol 7 pp 1872-78 

[14] Sokolova Y A, Shafigullin L N, Sokolova A G and Romanova N V 2018 Carbon fiber reinforced 

plastic technology IOP Conference Series: Materials Science and Engineering vol 365 issue 3  

032020 

[15] Shafigullin L N, Gumerov I F, Ibragimov A R, Shafugullina G R, Nizamova A I and Romanova 

N V 2018 Aspects of using accelerated weather testing methods for polymeric materials IOP 

Conference Series: Materials Science and Engineering vol 412 issue 1 012069  

 


