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Abstract. This paper proposes a method based on deep learning to estimate parameters for 

camera localization. The parameters are 6-DOF camera pose and regressed from a single RGB 

image by an end to end convolution neural network. The proposed network makes use of batch 

normalized method, which relieves the disappearance of gradient, leading to drastic 

improvements in convergence speed. In addition, inspired by decomposing convolutions, the 

network breaks large convolutions into more small convolutions to cascade, which reduces the 

computational complexity, and enhances network feature representations owing to adding a layer 

of convolution. This CNN-based method is able to learn effective feature for camera localization 

in state of motion blur and illumination changes, while the traditional SHIF-based methods fail. 

Experimental results on both indoor and outdoor public datasets show the improved network 

achieves an increase in accuracy, and outperforms with the compared methods.   

1. Introduction 

As a fundamental research task, parameter estimation for camera localization plays an important role in 

the field of mobile robot navigation [1], unmanned driving [2] etc. Traditional geometric methods 

estimate inliers of camera localization based on SFIT features between images. However, these methods 

are highly dependent on texture information of images and have complex computation in feature 

processing. In this paper, we present a method via deep learning to solve the problems above. 

In recent years, a great deal of effort has been devoted to studying this issue based on deep learning. 

There are mainly three aspects for scholars to research: (i) input of the network, including single RGB 

image [3], optical stream images [4, 5] and IMU data [6]; (ii) structure of the network, such as 

GoogLeNet, VGG and LSTM, many studies are improved on these basic networks [7-10]. (iii) output 

of the network, some networks directly output a 6-DOF vector of camera localization [3], while some 

output the position and angle parameters separately [7]. Since 2016, Kendall et al. first proposed the 

framework of end-to-end convolution neural network to learn camera localization [3]. So far, many new 

network models have been put forward to estimate the parameters by training images. The PoseNet 

network proposed by Kendall et al. laid a foundation for subsequent researchers to use deep learning to 

solve camera localization problems. 

The main motivation of our study is to optimize the PoseNet. Although it has overcome the 

limitations of traditional methods, there are some shortcomings: it can been found from the experimental 

results that the error is a little bigger in 7 Scenes of public indoor datasets. For example, in the 
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experiment of "Stairs", its error of localization is 0.47 m, but the overall space is the size of 2.5 * 2 * 

1.5. Therefore, the method proposed in this paper is mainly aimed at to improve the accuracy of indoor 

scenes. 

The contributions of our method can be summarized as follows: (i) decomposing convolutions. The 

5*5 convolution are replaced by two 3*3 convolutions, which reduces the number of parameters and 

overfitting; (ii) adopting Batch Normalized (BN). The use of BN has accelerated the training speed of 

networks and improved the accuracy of learning. In addition, when BN is applied to a certain layer of 

convolutional neural network, the internal processing of each mini-batch data is standardized to 

normalize to the distribution of N (0,1), which reduces the change of the internal neuron distribution. 

Experimental results show that the improved network is more accurate than the previous network 

PoseNet, which proves the proposed method is effective. 

The rest of this paper is described below. We introduce the details of our method in Section 2. The 

experimental process and results are showed in Section 3. At last, we conclude the paper briefly in 

Section 4. 

2. Method 

In this section, we will describe the proposed method in detail. First, we analyze how the method returns 

the camera pose by means of deep learning, and use the Euclidean distance loss function to evaluate the 

training of model (as described in Section 2.1). Second, the network replaces 5*5 convolution by two 

3*3 convolutions, which reduces the amount of model parameters and computational complexity at the 

same time (as described in Section 2.2). Third, we apply the Batch Normalized (BN) method to the 

network, which is added after convolutional layer to normalize the feature to distribution of  𝑁 (0, 1), 

which alleviates the problem of gradient disappearance and speeds up the training (as described in 

Section 2.3). 

2.1. Camera pose regression 

First, set the image sequence and its corresponding camera localization as a collection: 

 𝑍 = (𝐼, 𝑃) = {(𝑖1, 𝑝1), (𝑖2, 𝑝2), … (𝑖𝑛, 𝑝𝑛)}                                              (1)  

Where  𝐼  represents the image and  𝑃 represents the camera pose. Assuming that there is a functional 

relationship between elements 𝐼 and 𝑃 in set  𝑍, set to 𝑓𝐼𝑃, then a mapping relationship we need to learn 

through convolutional neural networks is: 

  𝑝𝑖 = 𝑓𝐼𝑃(𝑖𝑖)                                                                 (2) 

In SHIF-based methods, we know that 𝑓𝐼𝑃  , a conditional probability distribution for 𝑃(𝑝̃|𝑖̃). In 

convolutional neural network, after the network model is trained, the relationship of the mapping 

function can be learned. Then, the camera pose of the current image is output during test. Therefore, the 

conditional probability distribution relationship based on the deep learning network model is 𝑃(𝑝̃|𝑖,̃ 𝑍). 

After training the datasets and its corresponding camera pose, the model fits the parameter   𝜔. When a 

query image is used, the conditional probability distribution can be converted to: 

  𝑃(𝑝̃|𝑖̃, 𝑍) ≈ 𝑃(𝑝̃|𝑖̃, 𝜔)                                                          (3) 

Further derivation of the formula above: 

P(𝑝̃|𝑖̃, 𝑍) = ∫ P(𝑝̃, 𝜔|𝑖,̃ 𝑍)𝑑𝜔 = ∫ P(𝑝̃|𝑖̃, 𝜔) ∙ P(𝜔|𝑍)𝑑𝜔                           (4) 

It can be seen from (4)  that the problem of solving the conditional probability is converted into the 

posterior distribution problem of model parameter   𝜔. Then use the Bayesian formula to convert the 

parameter posterior distribution problem into: 

 P(𝜔|𝑍) =
P(𝑃|𝐼,𝜔)∙P(𝜔)

P(𝑃|𝐼)
                                                            (5) 

Here we should note that in   P(𝑃|𝐼), the 𝑃 in parentheses indicates the camera pose. 

In summary, the conditional probability distribution function of the input image sequence 𝐼 and the 

output camera pose 𝑃 is: 

                       P(𝑝̃|𝑖̃)=∫ P(𝑝̃, 𝑖̃|𝜔) ∙
P(𝑃|𝐼,𝜔)∙P(𝜔)

∫ P(𝑃|𝐼,𝜔)∙P(𝜔)𝑑𝜔
𝑑𝜔                                         (6) 
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Through the above series, we can use MAP (Mean Average Precision) to estimate the posterior 

distribution of 𝜔 and convert the pose estimation problem into the maximum posterior distribution  

P(𝜔|𝑍). 

The same as PoseNet, our network outputs a 6-DOF vector P, which represents camera localization. 

𝑃 = [𝑥, 𝑞]                                                              (7) 

Where 𝑥 and 𝑞 indicate camera position and orientation respectively. 

In order to make the network to regress the pose better, we use the Euclidean distance loss function: 

                  𝑙𝑜𝑠𝑠(𝐼) = ∑ 𝜆(‖𝑥 − 𝑥̅‖2 + 𝛽‖𝑞 − 𝑞̅‖2) + (1 − 𝜆)𝑛
𝑖=1 ∑ 𝜔2                            (8) 

Among them, 𝑥  and 𝑞  respectively represent the camera position and orientation, because the 

displacement change amount is usually higher than the angle change amount, which causes the error of 

the displacement in the loss function to be large, so the weight coefficient 𝛽 is introduced to balance. 𝜆  

is the proportional coefficient of BN. 

The network structure adopted in this paper is the improvement of PoseNet with the help of Inception 

V2 [11]. RGB images are input to the network, and 6-DOF camera pose are output through end-to-end 

convolutional neural network after learning. Figure 1 is the overall platform of network. As shown in 

the figure, the RGB images of 224*224 are input, and the inliers of feature for camera localization are 

estimated by the network proposed. Finally, multiple local features are fused through the fully connected 

layer with the scale of 2048, and the camera pose of the image is output. Next we will focus on how our 

network improves over the PoseNet model. 

 
 Figure 1. The overall structure of the optimized network  

2.2. Decompose convolutions  

Generally speaking, theoretical research based on deep learning requires a very large dataset, and the 

number of the parameters is huge. Therefore, the resources consumed in the calculation are so much. 

On the basic of VGGNet [12], it is assumed that the feature numbers of the 5*5 and two-level 3*3 

convolution outputs are the same. Two 3*3 convolutions replace the 5*5 large convolution, then the 

calculation of the two-stage 3*3 convolution is 18/25 times ((3*3 + 3*3) / 25) of the former, and the 

calculation amount is reduced. At the same time, the addition of a layer of convolution also improves 

the representations of the model and enriches the spatial characteristics. So, in the inception structure of 

the PoseNet network, a large 5*5 convolution is replaced with two 3*3 convolutions. As shown in Figure 

2, it is a schematic diagram of decomposing convolution. 
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Figure 2. 5*5 convolution is decomposed into two 3*3 convolutions in series 

2.3. Batch Normalized (BN) 

Batch Normalized method [13] is based on the mini-batch SGD [14]. Although the mini-batch is 

accurate in gradient when updating and the parallel computation speed is fast. The complexity of   

parameters is also very high. In deep learning, the parameters of each layer of convolutional neural 

network are changing and updating during training, especially the Internal Covariate Shift problem 

usually occurs in the hidden layers. As the layers added, the feature distribution will also gradually 

deviate to a certain extent during the training process. Generally, the overall distribution (assuming 

Sigmoid function) will approach the two extremes of upper and lower limits. As a result, gradient 

disappearance will come up, which is the essential factor of slow convergence. 

The proposal of Batch Normalized is to solve the above problems. Through reasonable 

standardization, the feature distribution of each layer satisfies the standard normal distribution   𝑁 (0, 1),  

as much as possible. The advantage of this operation is that it is mandatory to keep the input value in a 

more sensitive area, making the gradient larger and reducing the problem of gradient disappearance. In 

addition, when the gradient is always large, the efficiency of the neural network for parameter 

adjustment is also improved, and the speed of tuning for the loss function is also increased, so that the 

convergence speed is further accelerated during training. Another advantage is that with the rapid 

learning efficiency, it is possible to continue the iteration, training and learning more features, which 

improves the accuracy, and reduce the operation of the Dropout after achieving the previous accuracy. 

The network structure can be simplified simultaneously. In the inception of the PoseNet network, we 

add Batch Normalized after convolution layer, remove the Dropout, and local response normalization 

(LRN). 

3. Experimental Results 

As for experiment, we choose the public datasets: indoor 7 Scenes dataset and outdoor King's College 

dataset. The indoor dataset is RGB-D images collected by Kinect sensor, mainly selecting scenes with 

small scale, such as indoor stairs and office corners. There are 2000 to 12,000 images in each scene with 

a resolution of 640*480 and depth images. In the network adopted in this paper, only RGB images need 

to be input. As shown in figure 3 [15], it is the indoor scene image. Besides, in order to verify the 

effectiveness of our network, we choose outdoor King's College dataset for experiments. The King's 

College dataset is annotated by SFM method. Figure 4 shows the scene of outdoor King's College [16]. 

  
Figure 3. The indoor scenes from left to right：Chess, Fire, Heads, Office, Pumpkin, Red Kitchen and 

Stairs. 
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Figure 4. The outdoor King's College scenes  

In order to verify the performance of the proposed method, all experiments are conducted using caffe 

on the graphics workstation GW933. The operating system is 64-bit Ubuntu 16.0, 1TB DDR4-2133MHz 

R-ECC memory, 4T hard disk, 4 Titan GPU. 

In the experiment, we set the initial learning rate to 0.0001, 90% attenuation per 100 iterations, set  

the momentum factor to 0.9, and the batch_size to 75. We make use of Adagrad algorithm to optimize 

the network.  Snapshot every 2,500 times, and the global weight is attenuated to 0.5. 

We compare the proposed network with PoseNet and ScoRe Forest [17]. The 224*224 pixel RGB 

image inputs to the network, and convolutional neural network regresses parameters of camera 

localization via training. Table 1 is the experimental result of 7 indoor scenes and outdoor King's College 

scenes in the public dataset. 

Table 1. The comparison results of camera position and orientation error. 

 

 

Datasets 

Images 
Size of 

space 
Compared methods 

Train Test Unit:m 

SCoRe 

Forest(Uses 

RGB-D) 

PoseNet Our Method 

Chess 4000 2000 3*2*1 0.03m,0.66° 0.32m,4.06° 0.28m,4.11° 

Fire 2000 2000 2.5*1*1 0.05m,1.50° 0.47m,7.33° 0.43m,7.43° 

Heads 1000 1000 2*0.5*1 0.06m,5.50° 0.29m,6.00° 0.21m,6.30° 

Office 6000 4000 2.5*2*1.5 0.04m,0.78° 0.48m,3.84° 0.43m,3.32° 

Pumpkin 4000 2000 2.5*2*1 0.04m,0.68° 0.47m,4.21° 0.43m,4.29° 

Red Kitchen 7000 5000 4*3*1.5 0.04m,0.76° 0.59m,4.32° 0.50m,3.83° 

Stairs 2000 1000 2.5*2*1.5 0.31m,1.32° 0.47m,6.91° 0.44m,7.13° 

King’s College 1200 343 140*40 N/A 1.92m,2.70° 1.81m,2.57° 

 

As can be seen from the table, ScoRe Forest method is currently the highest accuracy algorithm for 

indoor small scene, but the input data is RGB - D images. Here are something to explain why RGB - D 

images is more valid for estimating parameters of camera pose: in small indoor scenes, the depth 

information has a great influence on the hypothesis inliers, because the depth image itself has geometric 

feature. When the camera is shooting a image indoor, the smaller angle of view rotates, which will make 

a big difference between the image and image of next frame. Although ScoRe Forest method has the 

highest accuracy, the disadvantage is that the input is RGB-D image.  In practical application, RGB-D 

image can only be used in small indoor scenes. In large outdoor scenes, compared with RGB, the feature 

proportion of depth information is little, so ScoRe Forest method is not suitable for large outdoor scenes. 

The results of orientation are not accurate as PoseNet in some tests. We explain that the magnitude 

of position is many times bigger than orientation although we use coefficient β to balance in the loss 

function, the proportion is still tiny. In the PoseNet, it normalizes the quaternion orientation vector to 

unit length, which we need to improve in future work.  
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4. Conclusions 

In this paper, we propose a parameter estimation method for camera localization based on deep learning. 

The RGB image is input to estimate the inliers of camera pose by convolutional neural network, and a 

6-DOF camera pose is regressed after network training. The convolutional neural network is an 

improvement method based on PoseNet. Two small convolutions in series are used to replace the large 

convolution, which reduces the amount of the model parameters and makes the convergence faster. 

Moreover, Batch Normalized method is applied to convolutional layer, relieving the problem of gradient 

disappearance. Experimental results show our method has achieved a good performance, and is more 

accurate in position and practical. 
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