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Abstract. Online prediction of data stream is currently being used in various fields. The 

prediction method based on Gaussian Process Regression has obvious advantages since its 

outputs have a probabilistic significance, which is suitable for dealing with nonlinear and 

complex regression problem. However, the characteristics of the data stream are real-time and 

online. If only using the historical data of the previous time as the training sample to construct 

the prediction model, the model will not be accurately predicted once the distribution of the 

new data changes. To this end, we employ the Online Free Variational Inference 

approximation to build the prediction model. The key idea is to introduce a variational 

distribution and maximizing the Kullback-Leibler Divergence between the variational 

distribution and the true value of the output’s posterior distribution. Further, we use telemetry 

data to verify the validity of the Online Free Variational Inference approximation and the 

experiment shows that the online data stream can be predicted well by the method employed in 

the paper.  

1. Introduction 

Space science experiments and space observation activities have gradually increased nowadays. The 

payload application system is one of the most important sub-systems in the space missions, especially 

space science experiments. In order to ensure the normal operation of each payload, how to find faults 

in time and solve the faults quickly and unambiguously are one of the problems that ground-based 

receivers and researchers have been studying.  

The basis for judging the working state of each payload is the downlink telemetry data of each 

payload. If the data can be analyzed and processed effectively and accurately, and we can make good 

predictions of the data arriving in the future, it will be of great help to the follow-up experiments. 

Gaussian Process Regression can be better used for prediction because it can get the probability of 

output [1]. Therefore, this method is used more and more widely.  

The non-parametric of Gaussian Process Regression leads to its huge computational complexity. In 

order to solve this problem, researchers have studied some sparse methods, such as Subset Data 

approximation, Sparse Pseudo-inputs GP, etc. in references [2~9]. Most of these methods are based on 

historical data for a period of time to build a prediction model. However, if we continue to use the 

previous historical data as training datasets, the accuracy of the prediction may be greatly reduced 

once the data distribution at the next time period has changed. Therefore, an online Gaussian Process 
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Regression algorithm is needed to construct an online prediction model in order to ensure that the data 

of each time period can be predicted in real time. 

In this paper, we use the Online Free Variational Inference approximation (OFVI) to construct a 

model to realize the prediction of the online data stream. The main idea is to introduce a variational 

distribution to ensure that the variational distribution function and the true value of the output’s 

posterior distribution are as close as possible by maximizing the Kullback-Leibler Divergence (KL 

divergence). In order to reduce the time complexity, we introduce the inducing points to perform 

sparse approximation on the input data. Further, we use the gradient descent method to optimize the 

hyperparameters to obtain the optimal model for the prediction of data stream. 

2. Online Gaussian Process Regression with the free variational inference approximation  

2.1. Background of the free variational inference approximation 

Gaussian Process is a set of arbitrary finite random variables with a joint Gaussian distribution which 

properties are determined by the mean function and the covariance function [10]. Given N input and 

output pairs  N

nnn yx
1

,
=

, assuming noise, and defining Gaussian noise is )( 2,0~ yn N  , the relationship 

between input and output is ( ) nnn xfy +=  
where ( ) ( )( )|,,~ KxmGPf . We can calculate the 

posterior over f , ( ),| yfp  
and the marginal likelihood ( )|yp  

from these formulas [11]. However, 

it involves non-linear and unconstrained extreme problem, and involves inversion of the covariance 

matrix of nn  dimensions every gradient calculation in the process of optimizing hyperparameters. 

Therefore, the calculation amount of the training process of Gaussian Process Regression (GPR) is 

( )3nO , and the calculation amount of the covariance prediction is ( )2nO . 

The computational efficiency is very low when the data set is huge. In order to solve this problem, 

it is necessary to save Gaussian Process (GP) training time through sparse approximation and so on, 

thereby reducing time complexity and computational complexity. In this paper, we use the free 

variational inference approximation to reduce the time complexity.  

Given a variational distribution ( )fq , we can get the logarithm of ( )|yp  by equation (1): 

( ) ( ) ( )
( )

( )


 ,
)|,(

logd|,dlog|log qF
fq

fyp
ffqfyfpyp fvi ==

  (1) 
where  

 
( ) ( ) ( ) ( )  ,||||log, yfpfqKLypqFfvi −=

 (2) 

From equation (2), we can see that it is possible to ensure ( )fq  gets closer to the exact posterior 

( ),| yfp  as close as possible by maximizing the KL divergence. In order to reduce the amount of 

calculation, we select a set of u data set as the inducing points, so the approximate posterior 

distribution can be set by equation (3): 

 
( ) ( ) ( )uqufpfq u ,|=

 (3) 

where ( )uq  is a variational distribution over u and ( ),| ufp u  is the prior distribution of the 

remaining latent function values. Therefore we can get ( )( ),uqFfvi  by equation (4): 

( )( ) ( )
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According to equation (1) ~ equation (4), we can deduce ( )fq fvi  and ( )fviF  by equation (5) and 

equation (6):  

 ( ) ( ) ( ) ( ) ( )IuKKYNupufpfqyfp yuufuufvi

21 ,;|,|,|  −

  (5) 

 
( ) ( ) ( ) ( ) ( ) −−− −−+=

n

unuununnyufuufufvi KKKkIKKKyNFyp 11221 2,0;log|log 
  (6) 
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After the above approximation, the time complexity for approximate maximum likelihood learning 

becomes ( )2nuO . The above derivation process introduces the method of free variational inference 

approximation. The goal of this paper is to achieve prediction of online data stream, so we will 

introduce the idea of Online Free Variational Inference approximation in the next subsection, and 

using this idea to construct a model and optimize it to achieve prediction of data stream. 

2.2. Online free variational inference approximation   

The object of this paper is the telemetry data stream returned by the payload, and the data arrives in 

order. The goal is to ensure that data is predicted in time when the new time period arrives. The 

amount of calculation is huge if using all the historical data to build a prediction model, which leads to 

low efficiency [12]. Therefore, we access the data points of the current time period only. Further, the 

effect of the old data on the current posterior distribution needs to be propagated through the posterior 

distribution of the previous time period. Here, we introduce the inducing points that can represent the 

old data to reduce the calculation complexity. The inducing points also need to be adjusted online 

since the new parts will come over time. We will introduce the Online Free Variational Inference 

approximation (OFVI) and the optimization process of hyperparameters as follow. 

Define the true posterior distribution of the previous time period is ( )fqold , and the posterior 

distribution of the new arrival time period is ( )fqnew , where f  representing the function of training 

data. We can get equation (7) and equation (8): 

 

( ) ( )
( )
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1
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
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and we can get an approximation of ( )fyp old |  by equation (7): 
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Substituting equation (9) into equation (8), an approximation of ( )newold yyfp ,|  can be obtained as 

equation (10): 
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 (10) 
From equation (10), if the hyperparameter is a fixed value, the posterior distribution of the new 

data point can be derived. However, it is more difficult to find the result when the hyperparameter is 

updated online. In this paper, we use the inducing points to update the distribution of the variation. 

Here, we allow the location of the inducing input points in the approximation of the new data to be 

different from those in the old data.  

Define ( )oldzfa =  represents the inducing input points of the previous time period, and aNuma =  

represents the number of the inducing input points. At the same time, ( )newzfb =  is defined to 

represent the new incoming inducing input points for the next time period, and bNumb =  represents 

the number of its inducing points. Assuming ( )aqold  obeys Gaussian distribution, that is, 

( ) ( )aaold KMaNaq ,;= , so the true posterior distribution ( )fqold  of the previous time period can be 

expressed as equation (11): 

 
( ) ( ) ( )bqbfpfq newnewbnew ,|=

 (11) 

Similarly, the posterior distribution of the new coming data can be expressed as equation (12). 

Further, its inducing points and hyperparameters are all updated. 

 
( ) ( ) ( )bqbfpfq newnewbnew ,|=

 (12) 
Therefore, the approximate inference problem is transformed into the optimization problem using 

variational inference after processing. According to the principle of the variational inference 
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approximation algorithm introduced in the previous subsection, the KL divergence of ( )fqnew  and 

( )newold yyfp ,|ˆ  can be expressed as equation (13): 
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The next step is to optimize the hyperparameters to get the optimal solution. 

In order to optimize the hyperparameters, we calculate the boundary value of the online negative 

logarithmic marginal likelihood for equation (13). Deduce ( )( )newnew fqF ,=  and let ( )bq  be equal to 

0, we can get the optimal approximate posterior expressed as equation (14): 
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where f  is the function of the new training points and  
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Deriving  , we can get equation (15): 
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Equations (14) and (15) represent the process of hyperparameter adaptive learning in the Online 

Free Variational Inference approximation. The algorithm will be validated using the telemetry data 

stream of the on-track payload in Section 3. 

3. Experiment 

In this section, the downlink telemetry data stream returned by the temperature sensor of a certain load 

on the rail is used as the data set to test the feasibility of the Online Free Variational Inference 

approximation (OFVI) described. 

The data in the experiment is arrived in chronological order and we select the two columns with 

high correlation. The mean function is set zero. The Gaussian Covariance function is the squared 

exponential with isotropic distance measure. The optimal hyperparameters are obtained by minimizes 

the negative log marginal likelihood in gradient ascent method. For the convenience of comparison, 

we put the data coming from different time period into one picture, as shown in Figure 1.  
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Figure 1. Online prediction using the online free variational inference approximation 

In Figure 1, the black dots represent the new arrival data, the gray dots represent the old data of the 

previous time period, the blue curve represents the calculated prediction mean, and the blue shaded 

areas are the predicted confidence intervals. The green dots represent the set of inducing input points, 

which are distributed according to the characteristics of the data. The first row in Figure 1 shows the 

mean and the confidence interval based on the prediction model by using the data of the current time 

period. In the second row, the gray dots on the left represent the data of the previous time period, and 

the black dots on the right represent the new arrival data. Comparing the area of the red circle in the 

first row and the second row of Figure 1, the confidence interval originally predicted in the first row is 

relatively wider, but the distribution of the real data points obtained in the second row is inconsistent 

with the first one. Therefore, it indicates that the distribution of the newly arrived data does not follow 

the distribution of the old data in the previous time period, so it is not accurate to construct the 

prediction model only using the historical data as the training sample, and it is necessary to consider 

the prediction model for online updating.  

Similarly, in the third row, the gray data points of the two areas on the left represent the data that 

have flowed in the first two old periods, and the black points on the right represent the latest time 

period of the new arrival data. The area enclosed by the yellow rectangle in the second row represents 

the mean and confidence interval predicted based on the historical data coming from the previous one. 

The area enclosed by the yellow rectangle in the third row represents the distribution of the real data 

coming from the current time period. Comparing these two rows, we can found that the distribution of 

new incoming data does not follow the previous historical data distribution, so the online method 

ensures the accuracy of the prediction.  

The fourth row is a prediction model using all the datasets that come from the first three rows. It 

can be seen that the distribution shown is basically the same as it in the third one, thus proving the 

correctness and feasibility of the method described in the paper. However, since the fourth row 

constructs the prediction model with all the data as training samples, the complexity will increase 

greatly, so the effect in practical applications is not very satisfactory. In our experiment, Mean Square 

Error (MSE), R-square and time are used as model performance evaluation criteria. The smaller the 

Mean Squared Error, and the larger the R-square, the better the model's generalization ability and the 

higher the model's prediction accuracy. Table 1 shows the performance comparison results of the 

construction of the prediction model using the Full GP and the Online Free Variational Inference 

approximation (OFVI). 



AMIMA 2019

IOP Conf. Series: Materials Science and Engineering 569 (2019) 052056

IOP Publishing

doi:10.1088/1757-899X/569/5/052056

6

 
 
 
 
 
 

Table 1. Comparision of prediction model between using Full GP and Online Free Variational 

Inference approximation (OFVI). 

Method Time/s MSE R-square 

Full GP 7823.681 0.00462 0.89948 

OFVI   12.265 0.00471 0.89932 

Here, we can see that the training time using the Online Free Variational Inference approximation 

(OFVI) is significantly reduced by about 600 times compared with Full GP, but MSE and R-square 

have almost not changed. Therefore, the method we used is reasonable and available. 

4. Conclusion 

We have introduced the learning framework of the Online Gaussian Process Regression. Since the 

arrival of the data stream is continuous, if only using the historical data of a period time as the training 

sample for prediction, the accuracy of the prediction will be greatly reduced once the subsequent 

arrival data does not satisfy the distribution of the data at the previous time period. Therefore, this 

paper adopted the Online Variational Free Inference approximation, which can realize real-time update 

learning, and the predicted value of each period is obtained from the training samples of the latest. In 

addition, the computational complexity is greatly reduced and the operation efficiency is improved by 

introducing the inducing points. We use the downlink telemetry data stream of the on-rail payload to 

carry out experiments, and the feasibility and effectiveness of the method are verified. The method in 

this paper is suitable for real-time data stream and is increasingly used in the life. In the future, we will 

further optimize the algorithm and apply it to more fields of data stream. 
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