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Abstract. This paper presents an online saddle-point optimization algorithm (OSP) to solve the
optimal decision-making problem in economic games. In this setting, the two mutual
competing players choose a pair of optimal decisions (Nash equilibrium) at each iteration.
Firstly, the Follow the Leader (FTL) algorithm is proposed to update the decisions, and the
regularization term is added to stabilize the Nash equilibrium for both players. Secondly, the
saddle-point regret (SP-Regret) is used to measure the gap between the cumulative payoffs and
the saddle point value of the aggregate payoff functions. To this end, this paper aims to
minimize it. Finally, the simulation results show that, under the proposed OSP algorithm, the
SP-Regret can still be sublinear with regularization and the decision variables of both players
can be constrained to fluctuate within a certain range by adding regularization, which can
effectively make the Nash equilibrium stable.

1. Introduction
Oligopoly is a market structure dominated by only a few manufacturers, who tightly depend on each
other when making decisions. Under the assumption that the competitors try to act optimally, all
manufacturers will make the decision of maximizing their profits. Consequently, these decisions of the
manufacturers reach the equilibrium of oligopoly market (called Nash equilibrium)[1-2].

Saddle-point (SP) method[3-4] presented in the literature [5] is essentially a primitive-dual method.
In other words, it can effectively tackle the optimization problem with the equality or inequality
constraints by alternately updating the decision variables and Lagrangian multiplier variables.
Different from the literature [5] with the online gradient descent, this paper updates the above
variables by means of the Follow the Leader (FTL). The FTL is mentioned here, as the name implies:

Xppq < argmin Bty Le(xc) (2)

Motivated by [5], the literature [6] further proves that the regret of the algorithm is not greater than
O(VT). The SP-FTL algorithm developed by [7] is used to update the leader’s decision variables for
seeking the saddle point value of the sum of the payoff functions of the Lagrangian dual
transformation, that is, the Nash equilibrium point. Besides, it is verified in [7] that saddle-point regret
(SP-Regret) and individual regret (Ind-Regret) cannot simultaneously be sublinear regret.

Motivated by the interesting results of [7] and the equivalence between economic game theory and
SP optimization, this paper adds regularization term to the SP-FTL algorithm aiming at achieving
stable decision-making, and presents an OSP-RFTL algorithm to solve the optimal decision-making
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problem in a two-player economic game. In order to more clearly verify the role of regularized FTL,
this paper operates an experiment with the comparison of regularization and no regularization.

The paper is organized as follows. Section 2 provides description of symbols. Section 3 models the
equivalence between economic game theory and SP optimization. Section 4 introduces and analyzes
OSP-RFTL algorithm. Section 5 proves the effectiveness of regularization and the bound of SP-regret.
Section 6 contains numerical simulations of the proposed algorithms. Finally, Section 7 draws the
conclusion.

2. Notation

. . ] .
The notation argxrr}clgx;%?é Y1l q)(xT , V7 ©) means that, in a two-player economic game,

player q chooses the value (decision) of y* to maximize its sum of payoff functions from the
sequence Y= {yfl,ytqz,---,yt ¥}, while player p chooses the value of x[;, from the sequence X =
{xP*,xF?, -, xP*} to minimize its sum of payoff functions. Each component of this matrix represents
the payoff functlon at time t, and the pair of decisions (xF*,y*) are negotiated by player p and
player g. The player p has k kinds of decisions and correspondlngly player q also has. To simplify the
notation, in the following of this paper, Ly, q)(xr , ¥k can also be denoted as L.

3. Problem Statement

In a two-player economic game, two players mutually choose a pair of decisions (x;,y;) € X XY,
which can make objective function be minimum for one player but maximize for another player. At
each iteration, this pair of decisions is as close as possible to the Nash equilibrium. Coincidentally, the
method of SP-FTL can update two interdependent variables.

(Xt+1,Ye+1) < arg minmax Zg=1 L (X7, yr) 2)
XEX YEY

It has been shown that the Nash equilibrium decision-making problem is equivalent to the online
saddle point optimization problem[8]. In this paper, we apply the optimization method of OSP to seek
the optimal pair of decisions in economic game. In order to make the whole market stable, each pair of
decisions made by the two players are expected to be able to fluctuate within a given range.

Many literatures have extended the saddle point optimization problem to online learning
environment[9]. In order to measure the gap between the cumulative payoffs and the saddle point
value of the aggregate payoff functions, the saddle-point regret is introduced and defined as:

SP — Regret(T) = | X{_q L (x¢, ¥:) — minmax Y{_; L, (x,y) | 3)
XEX YEY

The goal of OSP problem is to select the decisions made by both players jointly, so that the profits
of both players are close to Nash equilibrium[10]. In addition, when only one player’s benefit is
optimized at a time, the standard online convex optimization environment is applicable to OSP
problem. Specifically, in order to measure each player’s own regret while fixing the other player’s
decisions, the individual-regret of both players are defined as:

Ind — Regret, (T) = Y- L (x;, y¢) — r;lel}(l Y1 Le(x,yp) (4)
Ind — Regret,, (T) = r;lg)gc ML, y) — Xioq Le(xe, ve) (%)

4. Algorithm Introduction

4.1. Preliminaries
The function f is called H-strongly convex about X — R, if for any x,, x, € X, the following holds:

H
fox1) = f(x) + V()" (g — x2) + By llx; — %1% (6)
where Vf(x) represents the sub-gradient of f at x. Strong convexity means the problem of min f(x) has
a unique solution. Similarly, if L is H-strongly convex-concave[7], then for any fixed yq" €Y, the
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function L¢ ) (X%, ¥7°) is H-strongly convex in x, and for any fixed x;

% e X, the function
Lt (p,g) (xP°, yY is H-strongly concave in y. In this case, there exists a unique saddle point for L.

As aresult, (x*,y*) is called the saddle point of L if there holds:

L(x%y) < L(x%y") < L(x,y") (7
If the following holds, then f is called G-Lipschitz:
[f(a) — f(b)| < Gla—b| 8
If the SP-Regret is called sublinear, there holds:
| Y11 Le (e, ye) — rxné? T)’}gf Yo Le(x,y) | < O(T) 9)

4.2. Online Saddle-Point FTL algorithm with regularization
When the equivalence between Nash equilibrium point and saddle point has been modelled, the OSP-
FTL algorithm update decisions according to the following rule:

Dx q+ : t Pk dk
(X1, Yee1) < arg min max Y-y Lepq (¥ ye) (10)

In order to make the market stable, each decision of the two players are expected to be able to
fluctuate within a given range. However, the following example shows that, the saddle point obtained

by the algorithm (10) of [7] is not always stable. For x € [—1,1], let f;(x) = %x, and fort=2,--,T,
let £, alternate between —x and x.
lx ,tisodd

St =1 7 . )
—sX ,0therwise

it can be seen that the decision change between x; = —1 and x; = 1, thus the obtained equilibrium
is unstable. So how to modify the FTL algorithm so that it does not change the decision frequently, but
it can still achieve lower regret? This motivates us to introduce a regularization term[11] for the OSP-
FTL algorithm.

Because the Nash equilibrium point is different at each iteration, the regularization is needed to
perform on the respective decision. This paper presents an OSP-RFTL algorithm, which is iteratively
updated according to the following rule:

(%ti1 Fe51) < (i Vesa) + Repay (2" 37" (12)
where Ry q) (%2, y7%) is a regularization function which aims to prevent the function
Ly pq (2", y7*) from overfitting.

Algorithm 1 OSP-RFTL

1: Initialize (define memory).

LGty o Loty
2: Compute Li(x,y) = : : :
Lt(xfk:ytql) Lt(xfk'ylflk)
3: Solve min max Y:_; Lz p,q) (xP*, y1) find the corresponding saddle point(xfj_l, ytq;l .

xPkex yikey

=D+« Dy + Pic 12
4 R69u|arize Jil;+1 &« xtq+1 a1||x2 ”5
Vg1 € Ve T az”)"t k”Z

5: Solve Y.y Ly (p,q) (2", 7).

6: Get SP — Regret(T) = | £, Le(%", %) — min max Yroa Le(xfe, v ) |

5. Convergence Analysis
Supposing {L¢,p,q) (%, y)}F_, are a series of H-strongly convex-concave functions and satisfy the G-
Lipschitz condition, we will verify that the SP-Regret can still be sublinear by adding the
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regularization. Firstly, the following Lemma 1 will analyse a quantity which is similar to SP-Regret,
but with decisions (xt ,yt ) replaced by (xF:,, v ).

Lemma 1: Let {(x"*, y,7)}7_; be the iterates of OSP-RFTL, the following holds:
~GELa et ) o .
< Xl Loy (W0 ¥i5a) — Pex yiey Sie1 Le oy (0 9 + Re ooy (20 97)
< —GXiq|lv" (13)

Proof: We next use the inductive method to prove the above inequality. When t = 1, the following
can be established:

Ll.(p.q)(xg*'yz ) - G||y1 "
< Ly (%37 557)

- I}’lklélx ey Zt 1 Loy (575 1) + Ry (67, 377%) (14)
3’1
Where the equation on the right is due to the following iterative rule:
(x5, y,") « arg mlélX max Lo (05 107%) + Ry oy (67 4™ - (15)
v ¥

Assume that When t= T — 1 the following is establlshed:
min max N721 Ly p,q) (00, ¥, )+Rt(pQ)(xt ¥e*)

xPkex ydkey
> Y51 L (xfi1visa) — GEIE v (16)
Then, fort =T,
: T— Pk .4 Pk .4
2Plex yiiey YE21 Lo (85 77) + Rep.y (62 v1)
= X5 Lepa (X740 r41) + Lr,p,q) (X730 Y741) -
By saddle point property inequality (7),
- D q« D+ qx«
> N1 Le o070 97) + Loy 7k 1)
- D qx D« qx«
> Y12 Le oo (0707 ) + Loy (0750 97 ) -
According to the assumptions (16),
- Pe G - . _ ol P 4
> Yot L (xt+1'yt+1) - G2?=11”3’t - yt+1|| + Lr,pq) (X730 v07)
_ Pe 0 - o _ s Pe .4 pe 4
=Xt=1Lepa) (i1 viia) = GEEZ v = visall + Lr,p,a) (X yr ) — L1,p.a) (X741 ¥731)
pe 4 - . .
> Yi=1 Lt,(p,q)(xt+1'yt+1) GXi=t |y — G|,
= Xlo1 Loy (Xtr 0 v1) — GEE=ally” - (17)
Similarly, by inductive method the left side of the inequality (12) can also be obtained.
x%igxyf?kagzt 1 Lo (4 %) + Reo,) (62 7¢)
D«
< Yot Lepay((ti0 viia) = GXloallxf” — x|l (18)

Then, based on Lemma 1, the main result of convergence analysis will be presented in the
following theorem.

Theorem 1: Let the component of {Lt(xt ,yt‘“‘)}t , be an arbitrary sequence of H-strongly
convex-concave, G-Lipschitz function. Then, the OSP-RFTL algorlthm guarantees SP-Regret(T)

— D« * .
=121 Lo (3¢ 7e") = min, max Fies Lo o) (0 22) + Ry (207!

<% (1 +logl) . (19)
Proof: By Lemma 1,

SP — Regret(T) < X1_1 Lt pq) (%F " %) = 1 Levn,oay (i1 Y1) + GElaa]lv
Since L p, q) Is G-Lipschitz, then SP-Regret(T)

< Yo Gl (xf v ) (xt+1’yt+1)|| + G Xt 1||yt

< GXi. 1(”xt
According to the Lemma 2 of literature [7], SP-Regret(T) further

(20)

*
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4G 4G
< GZ{=1E+ GZ?_lm
8G? T1
< T(l + fl ?dt)
2
<Z (@ +mT). 1)

6. Numerical Simulation
The following example is given to further visualize the above theoretical analysis:

1 1 T
xy + 3l = 2012 =S llx + 112 (t=1,3)

xy + 3l + 117 + 5 llx + 211 (t=3+1,-,T)
where L, q)(x, ¥) represents the payoff function. Let T be the total number of iterations. The initial

state values x and y are randomly selected from (0,1). Starting att = 1, x and y reach the saddle
point value according to the OSP-FTL algorithm in [7].

Lt,(p,q) (x, y) = (22)

12 T T T T T T 30
Individualx-regret Individualx-regret
— — — Individualy-regret 201 — — = Individualy-regret | 3
10 saddle-point-regret | | saddle-point-regret
10 1
]
8 1l
-0
% 8 ool
> >-20F
15 k5 \
= = AN
%Y
30 F Sea
N
-40 + RSN
e,
50 M
A
e
60k o, J
"Ny [ps
. , , , 70 . . . . . L
0 100 200 300 400 500 600 700 ] 100 200 300 400 500 600 700
iteration iteration
(a) The regrets without regularization (b) The regrets with regularization

Fig.1 The comparison in regrets
Fig.1(a) clearly shows that, without the regularization, the SP-Regret and the Ind-Regrets intensely
fluctuate. As shown in Equation (12), the 2-norm regularization terms o, || x||3 and oy ||y||3 are added
to x and y, respectively. The regularization terms are used to control the equilibrium relationship
between these two variables: while minimizing the training error, the regularization terms make the
Nash equilibrium point stable, which is clearly demonstrated by Fig.1(b).
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(a) The decisions of x and y with regularization  (b) The decisions of x and y without regularization
Fig.2 The comparison in decision variables
It can be seen from Fig.2(a) that, without regulation, the Nash equilibrium obtained by the OSP-
FTL algorithm of [7] fluctuate all the time. In the simulation, we choose the regularization parameters

asa; = 0.9 and a, = 0.1, respectively. Fig.2(b) shows that, by adding regularization, the two decision
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variables negotiated by the two players are just stable within a certain range. As it can be seen from
Fig.2(b), x fluctuates around the value 2, the same as y fluctuates around the value 0.6. By adding
regularization term, the Nash equilibrium point can steadily fluctuate within a certain range over time.

7. Conclusion

In this paper, the online saddle point optimization algorithm has been applied to the economic game.
First of all, the FTL algorithm has been proposed to solve such decision optimization problems.
Besides, regularization has been added to stabilize the decision, and the stability analysis of Nash
equilibrium has also been given. In the future, lower regret is expected to ensure better algorithm
performance. Combined with the research results on Byzantine-fault tolerance in recent years, our next
step is to apply algorithms to economic game so as to effectively monitor and better facilitate the
government’s anti-monopoly control.
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