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Abstract. We consider the b-coloring number of infinite graphs. We prove that the parameters 

of the infinite square, triangular and hexagonal lattices are 5, 7 and 4 on the plane. We also 

obtain that the parameters of infinite square lattices and its induction graph of n -dimensional 

are 12 +n  and 12 ++ nn .  

1.  Introduction 

The proper k -vertex coloring number )(G  of a graph G  is the minimum k  such that V  has a 

partition kVVV ,...,, 21  into independent sets. On the basis of define of the proper k -vertex coloring 

number, the achromatic coloring has been introduced by Garey et al. [1]. The achromatic number 

)(G  of a graph G  is the maximum k  such that V  has a partition kVVV ,...,, 21  into independent 

sets, the union of no pair of which is dependent. In 1999, Robert et al. [2] showed that )(G  can be 

viewed as the maximum over all minimal elements of a partial order defined on the set of all coloring 

of G .  

Similarly, Robert et al. [2] put forward concept of a b-coloring. And they proved that determining 

the b-chromatic number is NP-hard for genera graph, and the b-chromatic number of trees is )(Tm  or 

1)( −Tm  (This metric was upper bounded by the largest integer )(Gm  for which G  has at least 

)(Gm  vertices with degree at least 1)( −Gm ).  

The theory of b-chromatic index attracted many researchers. In 2015 Victor et al. [3] proved that 

computing the b-chromatic index of a graph G  is NP-hard, even complexity of the problem restricted 

to trees, more specifically, they solved the problem for caterpillars graphs. In 2015, Campos et al. [4] 

proved that every graph with girth at least 7 has b-chromatic number at least 1)( −Gm . In 2002, 

Mouider and Maheo [5] proved the determination of two lower bounds for the b-chromatic number of 

the Cartesian product of two graphs. Marko and Iztok determined lower bound for the b-chromatic 

number of the Lexicographic product (see [6]).In 2108, Chuan and Mike [7] showed that mK □ nK  

has a upper bound of b-chromatic number, and give different approaches that come close to this bound. 

We also consider Cartesian powers of general graphs, and show that the Cartesian product of d  

graphs each with b-chromatic number n  is at least 1)1( +−nd . 

Let G  be a simple graph; the vertex-set of G , denoted by )(GV ; the edge-set of G , denoted by 

)(GE ; the maximum degree of G , denoted by )(G ; denoted by }1,,1,0{][ −= kk  , kxx k mod)( = .  

Definition 1[2] For a graph G , suppose that vertices of G  are ordered nvvv ,...,, 21  so that 

)(...)()( 21 nvdvdvd  . Then the −m degree, )(Gm , of G  is define by  
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}1)(:1max{)( −= ivdniGm i . 

Definition 2 Let G  be a simple graph. A b-coloring is a proper coloring of the vertices of G  that 

has a central set. The b-chromatic number, denoted )(G , is the largest number of colors in any 

b-chromatic of G . 

Lemma 1[2] For any graph G , then )()( GmG   

We have straightforward bounds for )(G . For any graph G , then 1)()()( + GGG  . 

The Cartesian (or box) product of any two graphs G  and H , denoted by G □ H . The vertex set 

of G □ H  is the Cartesian product )()( HVGV   of G  and H . There is an edge between two 

vertices of G □ H  if and only if they are adjacent in exactly one coordinate and agree in the other 

(see [8]).  

In this paper, the neighbor sum distinguishing edge coloring of the infinite square, hexagonal and 

triangular lattices on the plane, and the infinite square lattices and this induction graph of 

n -dimensional are studied. 

The following definition is about the infinite lattices on the plane. 

Definition 3[9] Let P  be a path of infinite order. The infinite square lattices on the plane, L , is 

define by 

= PL □ P . 

Then for any two vertices ),( yx  and ),( yx   are adjacent in L  if and only if xx =  and 

1|| =− yy , or yy =  and 1|| =− xx . For any two vertices ),( yx  and ),( yx   are adjacent in H  if 

and only if yy =  and 1|| =− xx , or xx =  and 1)( 2 =+ yx , 1|| =− yy . For any two vertices ),( yx  

and ),( yx   are adjacent in rT  if and only if xx =  and 1|| =− yy , or yy =  and 1|| =− xx , or 

1=− xx  and 1=− yy , or 1=− xx  and 1=− yy . 

The following definitions are about the infinite square lattices and this induction graph of 

n-dimensional. 

Definition 4 Let P  be a path of infinite order. The infinite square lattices of n-dimensional, nL , 

is define by 

= PLn □ P □□ P □ P . 

Then for any two vertices ),...,,( 21 nxxxu =  and ),...,,( 21 nxxxv =  are adjacent in nL  if and only 

if ),...,1,...,,( 21 ni xxxxv = , where },...,2,1{ ni . For any two vertices ),...,,( 21 nxxxu =  and 

),...,,( 21 nxxxv =  are adjacent in nL
~

 if and only if  

),...,1,...,,( 21 ni xxxxv =  or 

),...1,...,1,...,,( 21 nmj xxxxxv −−=  or 

),...1,...,1,...,,( 21 nmj xxxxxv ++= , 

where },...,2,1{ ni , }1,...,2,1{ − nj , },...,3,2{ nm  and mj  . 

2.  Main results and proofs 

The following theorem is about the b-coloring of L . 

Theorem 1 5)( =L . 

Proof The degree of any vertex of L  is 4，then 4)( = L . It is known by Lemma2, that 

51)()( =+ LL . Now we prove that 5)( L . 

Each vertex u  of L  is defined by its coordinates, i.e., ),( yxu = . Let us define the following 

coloring: each vertex ),( yxu =  is assigned color 

5)2(),( yxyx += . 

Clearly, this coloring uses no more than 5 colors. 

Let us first show that this is a proper coloring. For this, assume that two neighbors u  and v  are 
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assigned the same color. Form the definition of L , then ),( yxu =  and ),1( yxv =  or )1,( = yxv , 

by definition of )(u  and )(v  we have  

55 )21()2( yxyx +=+ or 55 ))1(2()2( +=+ yxyx . 

Thus we end up with 5)(0 j= . However, }2,1{j  hence this is impossible. 

Now let us prove that this is a b-chromatic index. For every vertex ),( yxu =  of L  have four 

incident vertices, by definition of ),( yx , then 5)2()( iyxvi ++= , where 4,3,2,1=i . If ji  , then 

)()( ji vv   , where 4,3,2,1=j . The colors appearing on incident vertex are different about coloring 

of  . Then   is the b-coloring of L , then 5)( L . 

Corollary 1 7)( =rT  and 4)( =H . 

The proof is similar to proof of theorem1. There is only one different for the construction of 

b-coloring when each vertex ),( yxu =  of rT  ( or H ) is assigned color 

7)2(),( yxyx +=  ( or 4)2(),( yxyx += ). 

The following theorem is about the b-chromatic index of nL . 

Theorem 2 12)( += nLn . 

Proof The degree of any vertex of nL  is n2 ，then nLn 2)( = . It is known by Lemma2, that 

121)()( +=+ nLL nn . Now we prove that 12)( + nLn . 

Each vertex u  of nL  is defined by its coordinates, i.e., ),...,,( 21 nxxxu = . Let us define the 

following coloring: each vertex ),...,,( 21 nxxxu =  is assigned color 

12

1

)()( +

=

= n

n

i

iixu . 

Clearly, this coloring uses no more than 12 +n colors. 

Let us first show that this is a proper coloring. For this, assume that two neighbors u  and v  are 

assigned the same color. Assume also that the coordinates of u  and v  differ on the j  th dimension. 

Since ),...,,( 21 nxxxu =  and ),...1,...,,( 21 nj xxxxv = , by definition of )(u  and )(v  we have  

12

,1

12

,1

))1(()( +

=

+

=

 +=+ n

n

jii

ijn

n

jii

ij ixxjixjx . 

Thus we end up with 12)(0 += nj . However, ],1[ nj  hence this is impossible. 

Now let us prove that this is a b-chromatic index. For every vertex ),( yxu =  of nL  have n2  

incident vertices, by definition of ),( yx , then 12)2()( +++= ni iyxv , where ni 2,2,1 = . If ji  , 

then )()( ji vv   , where nj 2,2,1 = . The colors appearing on incident vertex are different about 

coloring of  . Then   is the b-coloring of nL , then 12)( + nLn . 

The following theorem is about the b-coloring of nL
~

. 

Theorem 3 1)
~

( 2 ++= nnLn . 

Proof The degree of any vertex of nL
~

 is nn +2 ，then nnLn += 2)
~

( . It is known by le , that 

11)
~

()
~

( 2 ++=+ nnLL nn . Now we prove that 1)
~

( 2 ++ nnLn . 

Each vertex u  of nL
~

 is defined by its coordinates, i.e., ),...,,( 21 nxxxu = . Let us define the 

following coloring: each vertex ),...,,( 21 nxxxu =  is assigned color 

1
1

2)()(
++

=

=
nn

n

i

iixu . 

Clearly, this coloring uses no more than 12 ++ nn colors. 

Let us first show that this is a proper coloring. For this, assume that two neighbors u  and v  are 
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assigned the same color. Assume also that the coordinates of u  and v  differ on the j  th dimension. 

Since ),...,,( 21 nxxxu =  and ),...1,...,,( 21 nj xxxxv = . Or assume also that the coordinates of u  and v  

differ on the j  th and m  th dimension. Since ),...,,( 21 nxxxu =  and ),...1,...,1,...,,( 21 nmj xxxxxv −−=  

or ),...1,...,1,...,,( 21 nmj xxxxxv ++= . By definition of )(u  and )(v  we have  

1212
))1(()(

,1,1
++++


==

+=+
nnnn

n

jii

ij

n

jii

ij ixxjixjx , or 

1212
))1()1(()(

,,1,1
++++


==

+−+−=++
nnnn

n

mijii

imj

n

jii

imj ixxmxjixmxjx , or 

1212
))1()1(()(

,,1,1
++++


==

++++=++
nnnn

n

mijii

imj

n

jii

imj ixxmxjixmxjx . 

Thus we end up with 
12

)(0
++

=
nn

j  or 
12

))((0
++

+=
nn

mj . However, ],2[],1,1[ nmnj −  and 

mj   hence this is impossible. 

Now let us prove that this is a b-chromatic index. For every vertex ),( yxu =  of nL
~

 have nn +2  

incident vertices, by definition of ),( yx , then 
12)2()(
++

++=
nni iyxv , where 1,,2,1 2 ++= nni  . If 

ji  , then )()( ji vv   , where 1,,2,1 2 ++= nnj  . The colors appearing on incident vertex are 

different about coloring of  . Then   is the b- coloring of nL
~

, then 1)
~

( 2 ++ nnLn . 

3.  Conclusion 

For the b-coloring of the infinite graphs on the plane square, triangular and hexagonal lattices, we 

obtained the b-coloring number of the infinite square, triangular and hexagonal lattices as Theorem 1 

and Corollary 1. Similarly, the b-coloring of the infinite graphs on the n - dimensional, we obtained 

the parameters of infinite square lattices and its induction graph as Theorem 2 and Theorem 3.This 

paper only considers the b-coloring of the common lattices graphs, and can also other lattices graphs. 
infinite square, triangular and hexagonal lattices 
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