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Abstract. Speed estimation is a key technology to realize sensorless control for the PMSM. 

Based on the unscented Kalman filter (UKF) method without linearization of nonlinear system 

equations, this letter provides square root unscented Kalman filter (SRUKF) algorithm that 

operates through iterating the square roots of the covariance matrixes obtained by QR 

decomposition and Cholesky decomposition. The presented method can further improve speed 

estimation performance through decreasing the effect of truncation error and enhancing the 

convergence and stability of algorithm. Simulation results of sensorless control system 

demonstrate the feasibility and effectiveness of the proposed algorithm. 

1. Introduction  

Permanent magnet synchronous motor (PMSM) is a new type electrical machine,  which 

has been widely used  in the fields of robotics, numerical control machine tools, electric vehicles and 

so on[1].  Traditional closed-loop vector control system of PMSM usually applies mechanical 

photoelectric sensors to obtain rotor information, eg speed or position. However, these sensors in the 

control system can not only yield additional cost, but also decrease adaptability and reliability[2]. To 

solve these shortcomings, sensorless control method is proposed. This method works by using 

estimation algorithm to identify rotor status after obtaining its voltage, current and flux linkage. In this 

way, mechanical sensors can be replaced by estimation algorithm[3]. So far, many different types of 

PMSM rotor state estimation methods have been proposed, including model reference adaptive system 

(MRAS) method[4], sliding mode observer (SMO) method[5], and extended Kalman filter (EKF) 

method[6] 

The key technology of the EKF method is to use first-order linearization to deal with non-linear 

systems, and then use the standard Kalman filter method to estimate status of the motor rotor. 

However, linearization of motor models can produce big truncation errors that have negative impact 

on statistical property of system status, which decrease estimation accuracy. The UKF method is based 

on UT transform, adopting Kalman linear filtering framework and reserving high-order term of 

nonlinear function[7]. UT transform is used in nonlinear transfer of the mean and covariance of 

one-step prediction equation. Compare to EKF, UKF observer can not only reduce the inherent 

linearization errors, but also achieve high estimation accuracy and save computation time. However, 

the UKF may yield round-off errors and truncation errors during computation. It may result in a loss of 

positive definiteness of the error equation matrix, which decreases convergence stability, estimation 

accuracy and robustness of observation[8]. 

In order to solve the shortcomings of the above two methods, sensorless control method of PMSM 

based on square root unscented Kalman filter (SRUKF) algorithm[9] is proposed in this letter. This 

method uses the square root matrix of the error covariance matrix to replace the covariance matrix of 
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the UKF algorithm for iteration, thus ensuring the positive definite of the covariance matrix and 

avoiding filtering algorithm divergence that caused by the propagation of accumulative error that exist 

in the calculation. Moreover, the algorithm uses the system state covariance matrix for Cholesky 

decomposition and QR decomposition, which enhances the numerical accuracy of the PMSM system 

state covariance matrix update process, and has better rotor state estimation accuracy and robustness 

of nonlinear PMSM. 

2. SRUKFE estimation Algorithm of Nonlinear Systems 

Suppose that, a discrete-time nonlinear system with the following mathematical model: 

1

1

( , )

( , )

k k k k

k k k k

x f x u w

y h x u v
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where n

kx 、 m

ky and r

ku are the system state vector, measurement vector and control 

vector at time k respectively; f(·)and h(·) represent deterministic nonlinear functions; Process noise
n

kw and measurement noise
m

kv are both white Gaussian noise, it are independent of each 

other and the mean value of zero. Their covariance matrices are Q and R respectively. 

Defined the state estimator of the system is ˆ
kx 、the state predictor is

| 1
ˆ

k kx  and the measured 

predictor is ˆ
ky . The basic steps of the SRUKF-based nonlinear system state estimation algorithm are 

as follows: 

Step 1, initialization of the algorithm: 

0 0
ˆ [ ]Ex x                                       (2) 

T

0 0 0 0 0
ˆ ˆEP x x x x                         (3) 

T

,0 0chol( )xS P                                  (4) 

Where the initial estimated state 0x̂ is the mean value of 0x ; P0 is the estimated error covariance 

matrix; Chol is a MATLAB instruction, it represents the lower triangular Cholesky decomposition of 

the matrix; Sx,0 represents the square root of the estimated error covariance of the initial state. 

Step 2, computing the 2n+1 Sigma sampling point set
, 1i k

of the estimated state of the system: 
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Equation (5): n is the dimension of the system state vector; 2( )n n represents a scaling 

parameter used to reduce the prediction error, κis a proportional scale constant, αis a parameter that 

determines the degree of dispersion or distribution of the sampling point in the vicinity, and its value 

range is usually between 0.0001 and 1.
1( ( ) )x,k in S

 
indicates the i column of 

1( ) x,kn S . 

Step 3, one-step prediction of system state quantity using Sigma sample point set: 

, / 1 , 1 1
ˆ ( , )x

i k k i k kf u  (6) 
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Equation (8): 
,m i

represents the weighting coefficient of the mean value. This step first uses the 

state equation to find the state prediction value
, | 1

ˆ x

i k k
of 2n+1 sampling points. Then use the equation 
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(8) to weight-average these predicted values to obtain a one-step predicted value | 1
ˆ

k kx of the state. 

Step 4, covariance square root matrix , | 1x k kS for calculating state prediction error: 

2

,0

,

= / ( ) 1

=0.5 / ( ),   1 ~ 2

c

c i

n

n i n
                        (9) 

, | 1 , 1:2 , | 1 | 1
ˆ ˆqr x

x k k c i n k k k k ，S x Q                   (10) 

, | 1 , | 1 0, | 1 | 1 ,0
ˆ ˆcholupdate , ,x

x k k x k k k k k k cS S x                (11) 

Where
,c i

represents the weighting coefficient of the covariance; 𝛽is a non-negative coefficient 

that reflects the motion information of higher order error terms; The symbols qr and chol update are 

MATLAB instructions, which respectively represent QR decomposition operation and Cholesky factor 

first-order update operation. We can see from equations (10) and (11) that the square root of the 

covariance of the state prediction error is mainly obtained by QR decomposition and Cholesky factor 

update two-step calculation. 

Step 5, calculate the measured prediction value using the Sigma sample point set： 

, | 1 , | 1
ˆ ˆ( , )y x

i k k i k k kh u                              (12) 

2

, , | 1

0

ˆˆ
n

y

k m i i k k

i

y                               (13) 

In this step, the measurement prediction values of 2n+1 Sigma point sets are obtained by using 

equation (12), and then the weighted average of these measurement output prediction values is 

obtained by using equation (13) to obtain the system measurement prediction value ˆ
ky . 

Step 6, calculate the residual covariance square root matrix ,y kS and cross-covariance matrix
xy

kP

between state and measurement: 
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Step 7, calculate the filter gain and update the state and its covariance square root matrix: 
T T

, ,( / ) /xy

k k y k y kK P S S                                   (17) 

| 1
ˆ ˆ ˆ( )k k k k k kx x K y y                                (18) 

, , | 1 ,cholupdate , ,-1x k x k k k y kS S K S                       (19) 

The algorithm is based on the nonlinear dynamic system of PMSM, and the UKF algorithm is 

improved and proposed the SRUKF algorithm to reduce the possibility of algorithm divergence. In 

general, the algorithm contributes better filtering accuracy and stability. Figure 1 illustrates the 

above process in sequence flow diagram. 
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Fig.1 Flow diagram of SRUKF algorithm 

3. Discrete mathematical model of PMSM 

Assume that the two-phase stator winding inductance of the motor is the same, in stationary (α, β) 

reference frame, the nonlinear mathematical model of PMSM is as follows: 

sin( )

cos( )

f

p r p

s s s

f

p r p

s s s

di uR
i n n

dt L L L

di uR
i n n

dt L L L

                    (20) 

where 
d

dt
 is the derivative operator; uα，uβ are the α-axis and β-axis stator voltages respectively; iα，

iβ are the α-axis and β-axis stator currents respectively; Ls and R are the inductance and resistance of 

stator winding; f is rotor flux linkage; θ and r are the rotor position angle and angular velocity 

respectively, np is number of the pole pairs. The motor speed changes slowly, implying that 𝑤̇𝑟=0, that 

is the following relationship: 

0r

r

d

dt

d

dt                                 

(21) 

Combined equation(20) with (21), consider the effects of system process noise and measurement 

noise, introducing state vector , ,[ , k k ki ix
T, , ]r,k k , control vector

T

, ,[ , ]k k ku uu and 

measurement output vector
T

, ,[ , ]k k ki iy .Therefore, by deriving, the system state dimension n=4, 

the input dimension r=2, the output dimension m=2, and the PMSM discretization mathematical model 

of the equation (1) can be obtained. The nonlinear function vectors in the model are ( , )k kf x u and

( , )k kh x u . 
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4. Simulation results and analysis 

Parameters of simulation PMSM: 

Parameter Value 

number of the pole pairs np =2 
stator resistance R=1.6Ω 
stator inductance LS=0.006365H 
flux linkage𝛹𝑓 𝛹𝑓=0.1852Wb 

rotor friction coefficient 5.396×10-5 
maximum load torque Te=2N·m 
supply voltage U=300V 

Select the initial state of the motor x0= [0,0,0,0]T, initial estimated error covariance matrix P0= 

diag(10-5, 10-5, 200, 10), noise covariance matrix Q= diag(10-8, 10-8, 0.1, 10-7), R= diag(10-5, 10-5); The 

sampling period Ts=10-6s, simulation duration is 1s; weight calculation correlation coefficient 

κ=0,α=1,β=2.The load jump and motor shift control scenarios are also considered in the simulation, 

and the sensorless control simulation results based on EKF and UKF algorithms are compared. 

Define the estimated speed as ˆ
r , actual speed as r and estimation error of speed as ˆ( )r r .Set 

the starting load of the motor to 1N•m and the initial desired speed is 600 r/min. Figure 2 to Figure 4 

are the graphs of the actual speed, estimated speed and speed estimation error for expected speed 

jumping (600r/min to 1000r/min in 0.5s moment). Figure 5 to Figure 7 are the graphs of the actual, 

speed estimated speed and speed estimation error for load hopping (1N•m to 2N•m in 0.5s moment). 
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Fig.4 estimated error at the desired           Fig.5 actual speed at the desired 

speed jump                              load jump 

 

     

     

     
Fig.6 estimated speed at the desired             Fig.7 estimated error at the desired 

load jump                                       load jump 

From Fig.2 to Fig.7, we can see that three different speed estimation methods can effectively 

estimate the motor speed and realize the tracking control of the desired speed by PMSM. However, 

compared to the other two methods, the SRUKF-based sensorless control method has faster speed 
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estimation dynamics and better desired speed control accuracy; 

In particular, according to Fig. 4 and Fig. 7, we can see that in the case of motor speed jump and 

load jump, the EKF and UKF methods have large error estimation errors, and the SRUKF method's 

speed estimation error varies around zero. The value is the smallest. This indicates that the sensorless 

control of PMSM by SRUKF method not only has better speed estimation response speed and 

accuracy, but also good observation robustness to load parameters and expected speed changes. 

Moreover, compared with the traditional EKF method and UKF method, the sensorless dynamic and 

static performance of the control is better. 

5. Conclusion  

Based on the standard UKF algorithm, the SRUKF-based rotor status estimation method performs 

computation through QR decomposition and Cholesky decomposition, and iterate directly with the 

square root of the covariance matrix specific to the status. The conclusion of the simulation analysis is 

that the SRUKF algorithm not only makes the system have better response speed and precision, but 

also has good ant-disturbance ability. Therefore, the algorithm proposed by this paper can deliver good 

sensorless rotor-speed-control performance for PMSM. 
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