
IOP Conference Series: Materials Science and Engineering

PAPER • OPEN ACCESS

PD-type Parameter Optimization Iterative Learning Control Algorithm
Based on Inverse Model
To cite this article: Zhanlei Xiong et al 2019 IOP Conf. Ser.: Mater. Sci. Eng. 569 052001

 

View the article online for updates and enhancements.

This content was downloaded from IP address 123.138.107.200 on 14/10/2019 at 22:46

https://doi.org/10.1088/1757-899X/569/5/052001


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

AMIMA 2019

IOP Conf. Series: Materials Science and Engineering 569 (2019) 052001

IOP Publishing

doi:10.1088/1757-899X/569/5/052001

1

 

 

 

 

 

 

PD-type Parameter Optimization Iterative Learning Control 

Algorithm Based on Inverse Model 

Zhanlei Xiong, Qingshan Zeng, Mingjun Yin  

School of  Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China 

 xiongzlzzu@163.com 

Abstract. In this paper, a proportion-differentiation parameter optimization iterative learning 

control (POILC) algorithm based on inverse model (IM) is proposed for the tracking control 

problem of a class of single input and single output discrete linear time-invariant (LTI) systems. 

The algorithm establishes the parameter optimal performance index function and adds the 

learning gain matrix to proportion and differential terms of the control law, which enable the 

algorithm to be applied to non-positive definite systems and to converge monotonously and 

rapidly. The purpose of above method is to reduce the influence of model accuracy on tracking 

performance. Compared with previous algorithms, the proposed algorithm has been improved 

to a certain extent in tracking accuracy, convergence speed and robustness. 

1.  Introduction 

With the development of iterative learning control (ILC) technology, the theoretical research content 

of ILC focuses on optimizing the ILC control law to improve its tracking performance. 

The idea of norm optimization iterative learning control (NOILC) was first proposed by Amann. 

Later, many scholars continued to improve and innovate on this basis. A PID-based fast POILC 

algorithm based on norm performance index was proposed for discrete systems, which improves the 

learning efficiency of the algorithm[1]. A quasi-optimal ILC algorithm was proposed to deal with the 

uncertainties in the system[2]. A NOILC algorithm based on interpolation points was designed for 

continuous linear time invariant systems, which verified the geometric convergence of error norm[3]. 

Aimed at the terminal tracking control of discrete systems, an optimal ILC algorithm based on data-

driven was proposed[4].  

Compared with the norm optimization theory, the idea of parameter optimization is easier to 

implement in engineering. Owens et al. proposed the parameter optimization theory on the basis of  

ILC norm optimization theory[5]. Since then, many scholars have continuously improved the tracking 

performance of algorithm to deal with various practical problems. In [6], a POILC algorithm was 

proposed for discrete LTI systems, which improves the tracking performance. Later, the high-order 

POILC algorithm was proposed to further improve the tracking performance[7-8]. The relationship 

between the positive definiteness of the system and the POILC algorithm was explored[9]. The 

robustness of parameter optimization iterative learning control algorithm was studied[10-12].  

However, the limitation of traditional POILC algorithm makes it only applicable to positive 

definite systems. In order to make the parameter optimization algorithm applicable to non-positive 

systems, the learning gain matrix is added to the proportional term of control law, which greatly 

improves tracking performance of the algorithm[13]. However, the learning gain matrix is derived 

from singular value decomposition (SVD) of the system model. When there exist model errors, the 

tracking accuracy and convergence speed of the algorithm are easily affected. 
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In order to make the POILC algorithm applied to non-definite system and improve its tracking 

performance, this paper makes the following improvements based on literature[13]: (1) The learning 

gain matrix is added to both the proportional and the differential terms of control law. (2) The learning 

gain matrix is obtained by inverting the system model matrix, which ensures that the product of the 

system model matrix and the learning gain matrix is a unit vector. As a result, ke
does not contain any 

model information during each iteration, which reduces the influence of model accuracy on system 

tracking performance. (3) The selection of learning gain matrix can also reduce the influence of model 

accuracy on parameter selection. 

Compared with the POILC algorithm proposed in [13], this paper presents a POILC algorithm 

based on inverse model. It reduces the influence of system model accuracy on tracking performance 

and can better deal with the uncertainties in practical process. 

2.  Problem Formulation 

Consider the following single input and single output discrete linear time invariant system: 

( 1) ( ) ( )

( ) ( )

k k k

k k

t t t

t t

+ = +


=

x Ax Bu

y Cx
.                                                   (1) 

[0, ]t T  denotes the sampling time interval. k indicates repetition number. ( ) m

k t x R , ( ) m

k t u R ,

( ) m

k t y R represent the states, inputs and outputs at time t of the k-th trial, respectively. A, B, C are the 

system matrices with appropriate dimensions. CB 0 . 0(0)k =x x  is the identical initial condition during 

each trial. The optimal input is  (0) (1) ( 1)d d d du u u N= −u
T
.The expected output trajectory of system 

(1) is ( )d t y R . ( ) ( ) ( )k d kt t t= −e y y . I is the n-order unit matrix. 

The input and output responses of the system can be written as follows:  

k k= +y Gu d .                                                                   (2) 

Then, =k d k d k= − − −e y y y Gu d . 
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Consider applying the following algorithm to non-positive definite systems. 

1 1 1( ) ( ) ( ( 1) ( ))k k k k k kt t t t + + += + + + u u Γ e e .                                             (3) 

( ) ( 1) ( )k k kt t t = + −e e e
. 1k +  and 1k +  represent the parameters corresponding to the error proportional 

term and derivative term, respectively. 
N NΓ R  represents the learning gain matrix. 

It is easy to get that G  is a n-order real non singular matrix. Then, there exists Γ  so that =GΓ I . 

The latter analysis will prove that the algorithm (3) can still guarantee the tracking error monotonously 

converge to zero when it is applied to non positive definite system. 

In the algorithm (3), the parameters 1k +  and 1k +  are selected to be the solution of the quadratic 

objective function 1kJ +  as follows. 

   1 1 1 1 1arg min ( , )k k k k kJ   + + + + += .                                                    (4) 
2 2 2

1 1 1 1 2 1 1 2, 0, 0k k k kJ e w w w w + + + += + +   .                                               (5) 

According to formula (3) and =GΓ I , we can get the following formula (6). 
2 2 2 2 2

1 1 1 1 1 +1

2 2 22 2

1 1 1 +1 1 +1

2 2 22 2

1 1 1 +1 1 +1
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k k k k k k k k k k k k k k
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     

+ + + + +

+ + + +

+ + + +

= − = − + − = − − = − + 

= + +  − −  + 

= + +  − −  +

e y y y y y y e G u u e G Γe Γ e

e GΓe GΓ e e GΓe e GΓ e GΓe GΓ e

e e e e e e e e , ke

.         (6) 

According to (5)-(6), let / 0, / 0J J   =   =  and we can get the optimal solution of the parameters. 
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Let 
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e e
. As we can see, kA is non singular and positive 

definite. According to formula (7), the following formula holds.  
1

1 1[ , ]k k k k   −

+ + = A B                                                              (8) 

It can be seen that the system parameters 1k


+  and 1k


+  depend entirely on the datas obtained during 

each iteration. The model accuracy has little influence on the selection of parameters 1k


+  and 1k


+ . 

Theorem 1. If the algorithm (3) is applied to the system (1), for any 0k  , there is 1k k+ e e
 and 

there are 
*

1lim 0k
k

 +
→

=
, 

*

1lim 0k
k

 +
→

=
, 

lim 0k
k→

=e
. 

Proof. Introduce the non optimal parameters +1=0k  and +1=0k  into equation (5). 
2 2 22 2

1 1 1 1 1 1 1 2 1 1( , ) ( ) ( ) (0,0)k k k k k k k k ke J e w w J e      
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So when k tends to infinity, 
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. So 

 1k


+  and 
 1k



+  are convergent 

sequences, then 
1 1lim lim 0k k

k k
  

+ +
→ →

= =
. According to formula (8) and Theorem 1, 

lim 0k
k

B
→

=
, then 

lim 0k
k→

=e
. 

3.  Robustness Analysis 

In practical applications, the algorithm is required to be robust to parameter, structure and output 

uncertainties. The robustness problem of ILC generally considers the convergence and stability of the 

system with uncertainties. This paper mainly focuses on the influence of model errors and external 

disturbances on the tracking performance of the algorithm. 

According to formula (2)-(3), it can be obtained that 1 1 1 1 1( ) (1 )k k k k k k k k k k   + + + + += − +  = − − e e GΓ e e e e
. 

It can be seen that the algorithm (3) can ensure that k+e 1  does not contain any model information 

during each iteration. Therefore, it has stronger robustness when there exist model errors.  

Let 
( 1) (1)k ke N e+ =

, it is easy to get the following formula. 
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.

 

When 1 1 11 + 1k k k  + + +− + 
, there are 

1Ψ
 and 1k k+ e e

. It is worth mentioning that the tracking 

error of algorithm (3) can converge to zero after two iterations in theoretical analysis. However, due to 

the uncertainties of model and external disturbances, it is difficult to achieve completely tracking after 

two iterations. To achieve better tracking performance, we use the formula (8) to optimize the 

parameters. 

Consider the following three situations: 

1) When model errors G  exist, then the established model is +G G . Since Γ  is obtained by 

inverting the system model matrix, it still satisfies ( )+  =G G Γ I . It can be concluded from the previous 

analysis that the convergence and tracking accuracy of the proposed algorithm are only related to the 

selection of parameters, and k+e 1  does not contain any model information during each iteration. This is 

the advantage compared with other algorithms. 
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Parameter optimization guarantees the realization of 1 1 11 + 1k k k  + + +− + 
, and then 1k k+ e e

. And, 

performance index 1( )kJ + 
 guarantees the optimal solution of parameters during each iteration, thus the 

system (1) can be tracked quickly and efficiently. 

2) When there are external disturbances k , suppose k 
: 

1 1 1 1 1 1 1( ) (1 ) ( )k k k k k k k k k k k k k k       + + + + + + += − +  + − = − −  − −e e G Γe Γ e e e  
1

1
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− −

Ψ
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Ψ Ψ  

3) When G  and k both exist, it still satisfies ( )+  =G G Γ I . 
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It can be seen from above analysis that the proposed algorithm can reduces the influence of model 

uncertainties on tracking accuracy and convergence in practical application. Parameter optimization 

makes the tracking control fast and effectively. It is worth mentioning that if the external disturbances 

are constant during each iteration, then 
lim 0
k→

=ke
. 

4.  Simulation Analysis 

In order to verify the validity of the algorithm (3), it is compared with the algorithm in [13]. Consider 

the following discrete linear time-invariant system. 

0.8454 0.0928 0.0464
( 1) ( ) ( )

0.0464 0.9976 0.0012

( ) [1 6] ( ), 0,1,2

k k k

k k

t t t

t t t N

 −   
+ = +    

    
 = =

x x u

y x

.                                       (9) 

Expected output trajectory 
( ) sin(2 / )dy t t N=

, sampling period 20N = . 
(0) 0k =x

. The range of 

eigenvalues of 
T+G G  is in  0.023 1.424−

. Therefore, the system is non-positive, so the traditional POILC 

algorithm can not ensure that the tracking error monotonically converges to zero. 

Use the proposed algorithm (3) to track the system (9). 

1 1 1( ) ( ) ( ( 1) ( ))k k k k k kt t t t + + += +  + + u u Γ e e  

1= −Γ G . 1k +  and 1k +  are solved by the equation(9). For better tracking performance, the weight 

parameters 1 2,w w
 are as small as possible. 

Fig.1 shows the convergence of the system tracking error norm in the iterative domain. Although 

the system (9) is non-positive, it can also guarantee monotonic convergence of tracking error. Because 

the learning gain and the control law are designed uniquely, 1k+e
 is only related to ke

, ke
, 1k + , 1k + . The 

model errors do not directly affect the tracking performance. After parameter optimization, the norm 

of the tracking error of the algorithm at the second iteration has reached 9.87 10− 7

. 
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Fig.1 The norm of the tracking error of the               Fig.2 The Comparison between the IM and 

algorithm (3)                                                           the SVD algorithm in [13] 

Fig.2 shows the convergence of the system tracking error norm of the two algorithms in the 

iterative domain. It can be seen from the comparison that the algorithm proposed in this paper has 

some improvements in convergence speed and tracking accuracy. 

In order to compare the robustness of the two algorithms, consider comparing the tracking 

performance in the presence of model errors and external disturbances. When there are model errors 

and external disturbances in the system (9), it may be assumed that: 

0.2 0.2

0.2 0.2

 
 =  

 
A .

0.1

0.01

 
 =  

 
B .  1 1 =C . (1) = (1) sin(2 / )dr rand rand t N=  y ,  (1) 0,1rand  . 

Fig.3 and Fig.4 show the convergence of the tracking error norm of the two algorithms in the 

presence of model errors G  and external disturbances r , respectively. 

    

Fig.3 The Comparison between the IM and            Fig.4 The Comparison between the IM and the 
the SVD algorithm in [13] when G  exist.                    SVD algorithm in [13] when r  exist. 

Fig.5 compares the convergence of the tracking error norm of the two algorithms in the presence of 

model errors G  and external disturbances r . By comparison, we can conclude that the proposed 

algorithm has stronger robustness and better tracking performance, which can better deal with various 

uncertainties in practical systems. The IM-POILC algorithm is hardly affected by the accuracy of 

modelling. For some practical systems that are difficult to model or have model errors, this algorithm 

will have excellent performance because of its stronger robustness. 

In the presence of model errors G  and external disturbances r , Fig.6 shows the expected output 

and actual output based on the IM algorithm at the 1st and 2nd iterations. Combining Fig.5 and Fig.6, 

we can conclude that at the second iteration the actual output is extremely close to the expected output, 

which verifies the effectiveness of the algorithm. 
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Fig.5 The Comparison between the IM and the       Fig.6 The IM algorithm tracks the desired output 

            SVD algorithm when G  and r exist.              at the 1st and 2nd iterations when G  and r exist.                      

5.  Conclusion 

For the tracking control problems of a class of single input and single output discrete linear time 

invariant systems (1), an IM-based PD-type POILC algorithm is proposed. This algorithm has a wide 

range of applications and can show the advantages of faster convergence, higher tracking accuracy and 

stronger robustness even if there are external disturbances and model errors. At each iteration, k+e 1  

does not contain any model information, its performance is hardly affected by model accuracy. 

According to the simulation results and theoretical analysis, compared with the algorithm in [13], the 

proposed algorithm has some improvements in tracking accuracy, convergence speed and robustness. 

Compared with previous research results, this algorithm has the following two advantages: (1) 

Because the learning gain and the control law are designed uniquely, the algorithm can be applied to 

non positive definite systems and the model accuracy has little effect on tracking performance of the 

algorithm. (2) In parameter optimization, the product of system model matrix and learning gain matrix 

is a unit vector, which makes that 1k +  and 1k +  are only related to ke
, ke

 and not affected by accuracy 

of the model. Based on the above two points, the proposed algorithm shows high tracking performance 

and robustness, which can deal with various uncertainties in practical systems. 
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