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Abstract. In recent years, distributed generation technology develops rapidly due to its’ 

flexible and environment-friendly nature. In order to better analyze the impact of DG on the 

economics and safety of distribution networks, a probability model for random load,  micro 

gas turbines and photovoltaic power generation system is formulated. With the objective of 

minimizing the network loss, lowest static insecurity probability, and the lowest cost of 

purchasing electricity, the optimization of distribution network with distributed generation is 

carried out by adjusting the distribution network topology and the output of controllable DG. 

The stochastic power flow is combined with the particle swarm optimization algorithm to 

obtain the Pareto non-inferior solution set, and then the subject is selected to obtain the optimal 

solution. Finally, simulations are carried out on the IEEE 33-bus test system and it is shown 

that the optimized network can effectively reduce the network loss and static insecurity 

probability on the basis of low cost of purchasing electricity. 

1. Introduction 

Distribution network reconfiguration (DNR) [1-2] is to optimize the distribution network operation by 

combining the state of the distribution switch according to the load of the distribution network and the 

output power of the distributed power supply. The advantages of distributed power supply, such as 

flexibility, economy and environment-friendliness, make it widely used in distribution network to reduce 

distribution network loss and improve node voltage. 

The output of distributed power supply is generally regarded as a fixed value in the research of 

distribution network reconfiguration [3-4]. In order to make the research of distribution network more 

practical, it is more and more important to deal with the uncertain factors reasonably [5-10]. In [8], scene 

partition method based on wasserstein distance index is used to solve the DNR problem. This method is 

one-sided in the consideration of uncertainty, and the result is limited, and the probability distribution 

of the output of state variables cannot be obtained. In [9], distribution network reconfiguration is studied 

considering the randomness of load and wind power generation, and two-point estimation method [10] is 

used to calculate stochastic power flow. When applied to the reconstruction problem, the calculation 

times are too many, the operation time is long. The practicability of this method is poor for the large-

scale distribution system. 

Considering the deficiency of the above two methods, this paper calculates stochastic power flow 

based on the method of reference [11]. In the case of establishing probability models with different 
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injection power, the algorithm of semi-invariant method combined with Gram-Charlier series expansion 

is used to calculate the stochastic power flow with DG. The semi-invariant operation is used instead of 

convolution operation, which effectively reduces the computational complexity. This method can not 

only get the probability distribution of state variables, but also accelerate the calculation speed, so it is 

suitable to solve the problem of distribution network reconstruction. 

There are two main methods to solve multi-objective optimization problems: one is the traditional 

algorithm, the other is the heuristic intelligent algorithm. Traditional algorithm is difficult to balance the 

weights between the indicators. Compared with the traditional algorithm, heuristic intelligent algorithm 

can effectively compromise conflicting objective function, and not only provides the decision-maker 

with the extreme solution of each objective function, but also can provide optimal and diverse solutions 

to compromise the interests of all parties. In this paper, the heuristic intelligent algorithm Pareto multi-

objective optimization method is adopted.  

Considering the potential of controllable DG in optimizing distribution performance operation index, 

the output of controllable DG is optimized as an independent variable for comprehensive optimization 

on the basis of reconfiguration [12-15]. Taking network loss, static unsafe probability and power purchase 

cost as objective functions [16 -17], the optimal solution set is obtained by changing the network structure 

and controllable DG output, and Pareto criterion [18] is used to deal with multi-objectives. The purpose 

of improving the static security and economy of distribution system is achieved. 

2. Multi-objective comprehensive optimization model 

2.1. Objective function 

(1) System static security 

In this paper, the probability of voltage violation is taken as the static security index of the system. 

The probability i that the node i voltage exceeds the limit can be expressed as: 

                                   max minPr Pri i i i iU U U U =  +                       (1) 

Where, Ui denotes the voltage of node i, Uimax and Uimin are the upper and lower limits of the node 

voltage, and Pr {} denotes the probability of the inequality. 

The probability of voltage not exceeding the limit is 1-i, and the probability of voltage exceeding 

the limit of the whole system is as follows: 

                                      ( )
1

1 1
n

i

i

 
=

= − −                                (2) 

n is the number of nodes in the system. 

(2) Economy of system operation 

The network active power loss and the power purchase cost per unit time (1 h) are taken as the 

evaluation indexes of the operation economy of the system. 

The optimization objective of active power loss are expressed as follows: 

                                     
2 2

1 2
min i i

i

i T i

P Q
f r

U

+
=                              (3) 

In this formula, f1 is the active power loss of the distribution network, ri is the resistance of the line 

i, Pi and Qi are the active and reactive power flowing through the end terminal of line i, Ui is the voltage 

amplitude of the end terminal of line i, and T is the branch set of the distribution network. 

The price of purchasing electricity from gas turbine is s1 $/kWh, from photovoltaic power generation 

system, and the price of purchasing electricity from photovoltaic power generation system is s2 $/kWh. 

If the purchase price of the main network is s3 $/kWh, the optimization target of the purchase cost can 

be expressed as follows: 

                              
1 2

2 1 2 3min a b c

a C b C

f s P s P s P
 

=  +  +                          (4) 
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Where C1 represents the node set of gas turbine output, C2 represents the node set with PV generation 

output, Pa and Pb represent the active power output of gas turbine and photovoltaic power system 

respectively, and Pc represents the active power output of the main grid system to the system. 

2.2.  Constraints 

Comprehensive optimization of distribution network needs to meet the following constraints 

(1) The distribution network is radial and there are no isolated nodes in it, which means there is 

no loop and no islands. 

                                     k kg G                                     

(5) 

Where gk represents the current network topology and Gk represents the set of network topology that 

satisfies connectivity and radiality. 

(2) Voltage constraint 

                                     min maxi i iU U U                                  

(6) 

(3) Branch capacity constraint 

                                     
2 2

,maxi i iP Q S+ 
                               (7) 

Where Si,max is the maximum power limit of branch i. 

(4) Constraint of DG output  

                                      , , ,max

, , ,max

G k G k

G k G k

P P

Q Q






                     (8) 

Where, the control variables PG,k and QG,k, respectively represent the active power and reactive power 

output of the controllable DG k; PG,k,max and QG,k,max respectively represent the maximum active power 

and reactive power that controllable DG k can output. 

2.3. Probability model of DG and load 

(1) Model of photovoltaic power generation 

The power generated by the photovoltaic array is: 

                                       MP rA=                                 (9) 

where A represents the total area of the battery panel, and η represents the photoelectric conversion 

efficiency. 

When the illumination intensity satisfies the Beta distribution, the power generated by the 

photovoltaic array also satisfies the Beta distribution: 

                                 ( )
( )

( ) ( )
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                      (10) 

Where RM=rmaxAη represents the maximum output power of the photovoltaic array, α and β are two 

parameters of the Beta distribution. 

(2) Model of micro-gas turbine 

In the iterative process of power flow calculation, micro-gas turbine can be converted into PQ nodes 

for processing. Two states probabilistic models are used to represent the operating state of the gas turbine: 

                                 ( )
1 0

i

p w C
P W w
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− =

        

     
                         (11) 
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where p represents the normal operating probability of the gas turbine; c represents the rated power of 

the gas turbine; w represents the actual power generation of the gas turbine. This paper assumes that the 

gas turbine input power meets the binomial distribution. It is assumed that the input power of gas turbine 

satisfies the binomial distribution in this paper. 

(3) Load model 

Operational practices have shown that the uncertainty of distribution load can be approximately 

reflected by a normal distribution. Thus, the probability distribution of active and reactive loads can be 

expressed as: 

                               ( )
( )

2

2

1
exp

22

P

PP

P
f P





 −
 = −
 
 

                         (12) 

                             ( )
( )

2

2

1
exp

22

Q

QQ

Q
f Q





 −
 = −
 
 

                          (13) 

Where μP and σP respectively represent the expected and variance of the active load. μQ and σQ 

respectively represent the expected and variance of the reactive load. 

3. Probabilistic power flow 

The existing probabilistic power flow algorithms can be roughly divided into three categories: analytical 

method, simulation method and approximation method. In this paper, the analytic method is used to 

calculate the probabilistic power flow. Based on the DC power flow equation and the linearized AC 

power flow equation, it is considered that there is no correlation between the random distribution of 

injection power. The probability distribution function of injection power is obtained according to 

convolution calculation, and then the probability distribution of node voltage is calculated according to 

the linearized power flow equation. 

3.1. Power flow equation linearization 

In power flow calculation, the node power equation can be represented by S=f(X), random variables can 

be expressed by their expected values and random perturbation values obeying a certain distribution. 

                          0 0S S S X X X= +  = +                                    (14) 

The Taylor series expansion of (17) is: 

                         ( ) ( )0 0 0 0 ...S S f X X f X J X+ = + = +  +                      (15)
 

where S0=f(X0).If ignoring the high order derivatives, we get: 

                                        1

0X J S− =                               (16) 

By convolution calculation, the probability distribution of output random variable ΔX can be obtained 

from the distribution of injected power ΔS. 

The semi-invariant method used in this paper replaces the complex convolution operation with 

simple addition-subtraction operation, which greatly reduces the computational burden. 

3.2. Process of probabilistic power flow 

The proposed probabilistic power flow algorithm consists of seven major steps which are described as 

follows: 

Step1. Enter the original data.  

Step2. Obtaining the initial value of output of photovoltaic power generation system. 

Step3.The deterministic power flow calculation is carried out, and the sensitivity matrix S0 is obtained.  

Step4. The semi-invariant of each random variable is obtained according to the relation between 

moment and semi-invariant.  
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Step5. The calculated semi-invariants are added according to their properties, from which the semi-

invariants of injection power for each node are obtained.  

Step6. According to equation (16), the semi-invariants ΔS(k)of the injection power of each node 

obtained from the previous step are calculated to obtain the semi-invariants ΔX(k) of each order of the 

state variable.  

Step7. The cumulative distribution and probability density function of the state variable ΔX are 

obtained by using the formula of the expansion of the Gram-Charlier series [17]. The expression is as 

follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

3 5 6 3 7 3 4 8 3 5 44
3 4 5 6 7 8

10 35 56 35
[1 + +  + + ]

3! 4! 5! 6! 7! 8!

g g g g g g g g g g gg
f x x H x H x H x H x H x H x

+ + + +
= + + +

 
(17) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

3 5 6 3 7 3 4 8 3 5 44
2 3 4 5 6 7

10 35 56 35
[ + + + + ]

3! 4! 5! 6! 7! 8!

g g g g g g g g g g gg
F x x x H x H x H x H x H x H x 

+ + + +
= + + +  (18) 

Where gυ denotes the normalized value of the semi-invariant υ-order, x is the normalized randomly 

variables. (x) and (x) are the probability density function and cumulative distribution function of 

standard normal distribution, respectively. Hγ(x) is Hermitian polynomial, which is the coefficient after 

finding the derivative of order γ for(x).  

Step8. The state variables and the confidence interval of branch power flow can be calculated by 

using the obtained cumulative distribution function. Calculating of voltage out-of-limit probability of 

the entire distribution system according to formula (2). 

4. Implementation of optimization algorithm 

4.1. Particle swarm optimization 

Particle swarm optimization (PSO) is a parallel evolutionary algorithm which finding the optimal 

solution through iteration calculation, and judges the merits and demerits of the solution by using the 

fitness value as the criterion.  

In order to enhance the optimization ability, the PSO iterative process is dynamically optimized [19]. 

The particle velocity and position are calculated as follows: 

( ) ( )1 1 2 2id id id id gd id id id idv v c r p x c r p x x x v=  + − + − = +                    (19) 

( ) ( )( )min max min max max/t t t   = + −  −                      (20) 

1 1 2 2
1 1 2 2

max max

b a b a
a a

c c c c
c c t c c t

t t

− −
= +  = +                         (21) 

Where pid and pgd respectively represent the individual and global optimal particle positions. t and 

tmax represent the current iteration number and the maximum number of iterations respectively. vid and 

xid are particle velocity and position. r1 and r1 are random uniform numbers in the interval. 

In addition to optimizing the iteration speed, the updated speed is optimized. Because xid must be an 

integer. When vi is in the interval [-0.5, 0.5], it is rounded to zero, and the iteration has no meaning. 

Therefore, after the speed is iterated once, it is judged whether the value of each dimension speed is 

zero. When the speeds of all the dimensions are zero, the random value is given to the current speed 

again, and then the position update. This is called speed zero elimination. 

After optimization, it not only improves the iteration speed, but also maintains the diversity and 

directionality of the particles. 

4.2. Multi-objective optimization 

The mathematical model of the Pareto multi-objective optimization method can be expressed as: 
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( ) ( ) ( ) ( )

( ) ( )

1 2min , , ,

. 0, 0

DF x f x f x f x

s t g x h x
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

=          

                       (22) 

Where D is the number of objective functions. g(x) and h(x) represent equality and inequality 

constraints, respectively. 

The optimal solution can be obtained from the dominating relationship of the solution. The optimal 

solution is often a solution set composed of multiple solutions. The decision maker can choose the 

appropriate solution from the optimal solution set according to his own bias. In this paper, the selection 

strategy in [16] is used for individual selection. a、b、c are called decision factors, and their size can 

be determined by the decision makers, reflecting the proportion of each objective function in the 

evaluation value. 

( )
( ) ( ) ( )1 1min 2 2min 3 3min

1max 1min 2max 2min 3max 3min

, s. t a b c 1
f k f f k f f k f

F k a b c
f f f f f f

− − −
=  +  +  + + =

− − −
                (23) 

4.3. Algorithm flowchart 

A flow chart of the comprehensive optimization algorithm based on stochastic power flow is shown in 

Fig 1. 
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Figure 1. Flow chart of the Comprehensive optimization 

5. Case study 

To verify the effectiveness of the proposed algorithm, a distribution system of IEEE33 bus system shown 
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in Fig 2. is tested. The system consists of 33 nodes,32 normally closed switches and 5 normally open 

switches. Set the benchmark parameter as Ub= 12.66kv and Sb =1MVA. 

 
Figure 2. IEEE33 bus system 

The photovoltaic power generation system was added at node 33, and the light intensity data was 

obtained by simulating the monthly average of the Guangzhou area (23.08°N, 113.19°E) in China using 

the HOMER software. A micro gas turbine (controllable DG) was added at the 18 and 29 nodes with an 

active output upper limit of 600 kW, a power factor of 0.9, and a usable rate of 0.9. The original load 

data is used as its expected value, and the standard deviation is 30% of the expected value. 

Among them, the PV generation can be regarded as uncontrollable DG. It can be seen from Table 1 

that in the original network structure (Case 1), the access of the PV system can reduce the network loss 

and the probability of static insecurity to a certain extent.  When the network structure is adjusted to 

minimize the static insecurity probability of the system (case 2), the static insecurity probability will be 

increased with the addition of PV power system.  The loss decreases with the increase of DG output, 

while the cost of purchasing electricity is the opposite. In this paper, the 100kW photovoltaic system 

with small rated capacity is selected in the reconfiguration optimization. 

Table 1. PV impact on the distribution network 

case 
outage 

line 

energy from 

PV/kW 

network 

loss/kW 

static insecurity 

probability 

purchase cost 

/$ 

case 1 
33 34 35 

36 37 

0 189.339 0.9995 182.955 

100 185.414 0.9985 183.994 

200 181.618 0.9962 184.885 

300 177.951 0.9920 185.925 

case 2 
6 14 

9 32 28 

0 139.107 1.48e-05 180.579 

100 136.170 2.527e-05 181.618 

200 133.417 0.0016 182.658 

300 130.845 0.0049 183.697 

The particle swarm optimization (PSO) algorithm based on stochastic power flow is used to calculate 

the "non-dominant" solution set of Pareto as shown in Figure 3. The optimization results are shown in 

Table 2. 

 
Figure 3. Distribution of Pareto solution set    Figure 4. Distribution of optimal solution set 

The final solution is selected from the Pareto solution set. Because of the restriction between the 

objective functions, when the purchase cost is low, the static insecurity probability often does not meet 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19 20 21 22

23 24 25 26 27 28 29 30 31 32 33
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the static security requirements of the system. Therefore, the solution whose static insecurity probability 

is less than 0.001 is firstly eliminated. For the remaining solution, as the static insecurity probability has 

been satisfied with the static security requirement of the system, it is only necessary to judge the 

"dominance" relation between the power loss and the purchase cost. The distribution of selected optimal 

solution set is shown in Fig 4. 

Since the static insecurity probability has met the requirement and its proportion is small, the power 

loss and the power purchase cost are both the indexes to evaluate the economic efficiency of the system, 

the proportion is the same, so the coefficients of the selection model in (29) are a =0. 4, b=0. 2, c=0. 4, 

then the optimal solution is obtained. The output expectation of photovoltaic system is constant, DG1 

represents 18-node distributed power output, and DG2 indicates 29-node distributed power output, 

which is added to the distribution network. The partial results of the optimal solution set are compared 

with the original solution. As shown in Table 2, the lower bound of the confidence interval of the voltage 

is the lowest value of the voltage obtained in the voltage interval with a probability of 2.5% - 97.5%. 

It can be found from Table 2 that although the cost of purchasing electricity in the original network 

is low, the static insecurity probability is obviously not satisfied, and the power quality is poor. After 

network reconfiguration and optimization, the network not only reduces the network loss, but also 

increases the minimum value of the confidence interval of the voltage, which greatly reduces the static 

insecurity probability. On the basis of satisfying the static unsafe probability, the optimal solution is 

balanced by the mutual restriction between the power loss and the purchase cost. The optimal solution 

obtained by the developed selection strategy can reduce the power loss to a greater extent. The minimum 

voltage of the confidence interval is improved and the static unsafe probability is kept small. 

The reconstruction solution in Table 2 is a reconfiguration scheme when the output of DG1 and DG2 

is set to a definite value (200kW and 150kW, respectively). At this point, the optimal output of the 

algorithm depends on the output of DG1 and DG2, and only represents a solution in the set of 

comprehensive optimization. Compared with the final solution of the optimization, although the cost of 

purchasing power is higher, the network loss is reduced. It can improve the probability of static 

insecurity and so on. 

Table 2. Results comparison of partial optimal solution set 
scheme outage 

line 

energy 

from 

DG1/ 
kW 

energy 

from DG2 

/kW 

network 

loss /kW 

static 

insecurity 

probability 

purchase 

cost/ 

$ 

Lower voltage 

confidence 

interval /p.u. 

Original 

network 

33 34 35 36 37 0 0 185.414 0.9985 183.9350 0.9364 

optimal 

solution 1 

7,34,11,32,37 100 250 99.532 5.0972e-07 203.2997 0.9681 

optimal 
solution 2 

33,14,10,31,28 250 150 98.047 2.5539e-08 206.5668 0.9728 

optimal 

solution 3 

6,14,9,17,37 250 200 93.053 1.5545e-09 209.6705 0.9760 

optimal 

solution 4 

6,34,11,32,37 50 150 114.156 4.0913e-06 193.9589 0.9659 

optimal 
solution 5 

7,34,10,31,37 450 250 73.652 3.8876e-09 225.4711 0.9811 

final solution 7,14,9,31,37 300 200 85.258 4.5958e-08 212.6554 0.9750 

reconstruction 

solution 

7,14,10,32,37 200 150 100.217 1.3049e-05 203.3294 0.9641 

6. Conclusion 

In this paper, on the basis of considering the randomness of distributed power supply and load, the 

influence of DG output on distribution network is considered. Through system simulation, it is found 

that the integration of DG can effectively reduce network loss and greatly reduce the static insecurity 

probability. Pareto multi-objective optimization can be selected by multiple optimization agents at one 

time. At the same time, this method, which combines the randomness of distributed generation, DG 

output and contact switch combination, has potential application value to ensure the static security and 

economy of distribution system. 
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