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Abstract. This paper presents an unmanned aerial vehicle (UAV) pose estimation system 

based on monocular simultaneous localization and mapping (SLAM) guided by the desired 

shot. The system enables UAV to automatically adjust the pose to achieve a shot close to the 

desired shot provided by the user. The SLAM module in the system includes ORB feature-

based visual odometry and Levenberg-Marquardt method-based optimizer. To ensure the 

reliability of the camera pose estimation result, the bag of words model is used to select an 

image which has enough good matches with the desired shot. The experimental results prove 

that the system is valid and effective. 

1.  Introduction 

Unmanned aerial vehicles (UAVs) have been widely used in aerial photography, geographical 

exploration and emergency response in disaster areas. However, UAVs are difficult to manipulate. It is 

hard to reach the ideal pose and get the desired shot in a short time. In the paper, a UAV pose 

estimation system is designed to solve the problem. The system is based on monocular simultaneous 

localization and mapping (SLAM) and is guided by the desired shot. 

1.1. System overview 

The purpose of the system is to enable a drone to adjust its pose to capture a shot that is closed to the 

desired shot provided by the user. The system is designed for drones with a monocular camera and a 

Pixhawk flight control[1].  

The system structure is shown in Figure 1. With a 3DR radio telemetry, the ground control station 

(GCS) can establish a connection with the airborne flight control. The user can monitor the status of 

the drone and export flight missions to the drone using methods implemented in GCS core. The image 

transmission equipment transmits the content captured by the camera to the picture transmission 

receiver in real time. The GCS obtains the video stream by accessing the web server hosted by the 

image transmission receiver.  

The SLAM and pose estimation module is the core of the system. The sequence of images acquired 

by the monocular camera is used to conduct pose estimation of the drone and construction of the 

surrounding map. The drone’s target pose is estimated based on the results obtained from SLAM and 

the desired shot provided by the user. The desired shot acquisition process is detailed in 2.3. Finally, 



AMIMA 2019

IOP Conf. Series: Materials Science and Engineering 569 (2019) 042036

IOP Publishing

doi:10.1088/1757-899X/569/4/042036

2

 

 

 

 

 

 

the target pose is exported to the flight control as a mission by the GCS. The flight control guides the 

drone to the target pose.  

 
Figure 1. System overview. 

The module has two parallel threads: motion estimation thread and mapping thread. The first one 

extracts ORB feature points, solves the motion of the camera between the current frame and the 

previous frame. The second one optimizes camera pose and map structure by minimizing re-projection 

errors and reconstructing the map. 

1.2. Related works 

When it comes to SLAM, A.J. Davison proposed MonoSLAM[2] in 2007, which was the first real-

time monocular vision SLAM system. The keyframe mechanism of PTAM [3-4] proposed the 

parallelization of tracking mapping process and was considered as the most accurate SLAM method 

from a monocular video in real time. ORB-SLAM [5] was a well-known successor to PTAM with 

good hardware versatility. Based on ORB features [6], the non-linear algorithm prevented the 

cumulative error effectively. It could quickly recover from losing track as well. However, the ORB 

feature detection was time-consuming. The three-threaded structure imposed a heavy burden on CPU, 

which made it difficult to transplant to embedded terminals. 

Moreover, there were also many other works such as LSD-SLAM[7] and SVO[8]. LSD-SLAM 

used the direct method to track, which enabled it to be insensitive to feature missing areas. However, it 

was unreliable when the camera moved fast. The most significant advantage of SVO was its speed. 

Taking advantage of the sparse direct method, it did not have to compute descriptors, nor did it need to 

process as much information as dense and semi-dense so that it could achieve real-time performance 

easily. 

2.  Methods 

2.1. Visual odometry 

Visual odometry (VO) is the front part of visual SLAM. It estimates the rough camera motion 

according to the parallax of adjacent images and provides a good initial value for further processing. 

From the perspective of feature extraction, the implementation of VO can be divided into two 

categories: feature-based methods and direct methods. The former works well even there is much 

noise and the camera moves fast; The latter does not need to extract features and can build dense maps 

but has the disadvantages of heavy computation and poor robustness. Therefore, feature-based 
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methods have long been (until now) considered as the mainstream method of VO due to its robustness. 

It runs stably and is a mature solution at present. 

On account of the ORB can be calculated faster, which enables it runs real-timely even in a 

portable device. It also has excellent uniformity and stability. Hence, ORB is used for it compromises 

well between quality and performance. 

By matching these feature points in adjacent images, the motion of the camera between the two 

frames can be estimated. Specifically, essential matrix E  is solved by constraint of epipolar line, 

which means for two pictures, the location of cameras and the position of one feature point in the 

world coordinate system are coplanar points. 

 
Figure 2. Epipolar Constraint. 

For monocular SLAM, triangulation is needed to figure out the depth of the feature points for map 

initialization. The depth of a point is determined by the angle of two different connections between it 

and observation points. 

After those preparatory work, we solve the 3d-2d point pair motion with Perspective-n-Point (PnP). 

In that way, we can minimize re-projection errors. 

2.2. Non-linear optimization 

Due to the accumulation of long-term errors, the trajectory of the camera and the map structure may be 

biased and inaccurate. Global optimization is needed to optimize the camera trajectory and map 

structure.  

There is a generic abstract representation for SLAM problem. The variables to be optimized is 

formulated as: 

  M1N1 ,,,,, yyxxX =  (1) 

Where nx  denotes the pose of the camera, my  denotes the coordinates of the landmarks.  

The motion model kx  denotes that the camera’s pose changes from 1−kx  to kx  at time k  because 

of the motion ku . The observation model j,kz  denotes the pixel coordinate of jy ’s projection to the 

image plane of pose kx  at time k . 
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where kw and j,kv  are both random errors subjected to a Gaussian distribution with a mean of 0. 

 ).,0(~),,0(~ j,j, kkkk QNvRNw  (3) 

Thus, the conditional probability of j,kz  is: 

 ).),,((),|( j,jj,j kkkk QyxgNyxzP =  (4) 
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Now we are solving an argmax problem. To maximize (4) is to minimize the negative logarithm of 

(4). Define the error between the truth and the estimated result as: 
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Now the problem is described as: 
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A least squares problem is constructed: 
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The Levenberg-Marquardt method is then applied to solve the least squares problem. The algorithm 

is implemented in g2o framework[9], which is utilized to solve the optimization problem. 

2.3. Desired shot acquisition 

The overall goal of camera pose estimation is to make the camera shot similar to the desired shot when 

it reaches the target pose solved by camera pose estimation. The desired shot acquisition process 

allows the user to interact with the system and generate the desired shot easily. 

It is vital that the desired shot is generated from the scene that is part of the map constructed by 

SLAM. To obtain the pose of the camera, the desired shot needs to be matched with the map to solve a 

PnP problem. If a scene was not a part of the map constructed by SLAM, there would be a high 

probability that the pose estimation fails. 

There is a keyframe set in the system which contains almost all scenes in the map. Take a frame 

selected from the keyframe set as the reference frame. The reference frame is perspective-transformed 

based on the four anchors specified by the user in the frame. Perspective transformation is the 

projection of a picture onto a new view plane. It is a mapping of two-dimensional ),( yx  to three-

dimensional ),,( ZYX  to another two-dimensional )','( yx  space. The result is obtained by 

multiplying the perspective transformation matrix by each pixel in the reference frame.  
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Firstly, calculate a perspective transform with four vertexes of the reference frame and the 

corresponding anchors specified by the user by solving a linear system of equations. Secondly, apply 

the perspective transform to the reference frame. The perspective-transformed frame is the same size 

as the reference frame. Pixels without foreground are filled with RGB(0,0,0) by default. Then the 

desired shot is obtained.  

2.4. Pose estimation 

It is necessary to establish a matching relationship between the feature points on the image and the 

three-dimensional points in the map to solve the PnP problem. 

When the desired shot is provided, the system finds a keyframe which is most similar to the desired 

shot and use these two images to perform feature points extraction and matching. Hence the matching 

relationship between the feature points in the desired shot and the three-dimensional points of the map 

can be solved. The bag of words module implemented in DBoW2[10] is used to find the images with 

the highest similarity to the desired shot. A feature point matching test should be performed between 

the image selected by DBoW2 and the desired shot to ensure the result is reliable.  
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Then the system utilizes the matched features to solve the PnP problem to obtain the camera pose 

of the desired shot. 

3.  Results 

The TUM data set[11] is used to test the system. This data set provides a sequence of images of a 

room, including depth images and RGB images. Only the RGB images are needed here. 

Run the system with the TUM data set and view the ground truth and estimation trajectory for 

comparison in figure 3. 

 
Figure 3. Estimated trajectory and ground truth. 

In order to view the result of camera pose estimation clearly, the SLAM was run on the first 100 

frames of [11]. The frames in the subset are of good continuity and stability. A frame from the subset 

is selected as the reference frame. The desired shot is generated by applying a perspective transform to 

the reference frame. As Figure 4 shows, the left one is the reference frame, and the right one is the 

desired shot. 

 
Figure 4. Reference frame(left) and the desired shot(right). 

Then the bag of words model is applied to select the frame with the highest similarity to the desired 

shot from the subset. After feature matching, the estimated camera pose is obtained by solving a PnP 

problem. Figure 5 shows the result of the camera pose estimation. 

 
Figure 5. Result of camera pose estimation. 
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4.  Conclusions 

In this work, we have presented a result-oriented UAV pose estimation system. Compared with other 

SLAM implementation, there is no loop closing detection in the system, which may lead to errors in 

global map construction. The system enables the user to adjust the camera pose in a simple and 

innovative way. The main idea of the system is to solve a PnP problem to estimate the camera pose 

using the desired shot and constructed map structure. As shown in the experimental results, the system 

is effective and reliable. 
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