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Abstract: Robust monotonic convergence (RMC) should be obtained when designing ILC 

(Iterative learning control) system. But it may cause convergence rate becoming slower. In 

order to maintain stability of control system, transient growth is often limited within a certain 

range, which is one of the most properties of transient behaviors. Pseudospectral of the system 

transfer matrix is introduced to predict the transient growth of ILC system. At the same time, 

asymptotic performance can be improved if the transient growth is kept small. Under this case, 

the convergence rate will also be speeded up. The simulation demonstrates the effective of new 

method for designing ILC system.  

1. Introduction 

Iterative learning control(ILC) is used to improve the performance of systems that repeat the same 

operation many times[1]. At the conclusion of each operation, ILC uses the tracking errors from 

previous iterations of the repeated motion to generate a feedforward control signal for subsequent 

iterations. Convergence of the learning process results in a feedforward control signal that is 

customized for the repeated motion, yielding lower tracking error. 

When designing a system, lots of designers follow the robustly monotonically convergent (RMC) 

rule, which can make system stable, but limit the performance of system[2]. According to the research 

of Longman, R.W and other researchers, some algorithms were used to avoid the large transient 

growth, by which system can appeal to the rule of RMC[2-6]. While the system satisfying a robust 

monotonic convergence (RMC) condition, it may limit performance, where the convergence speed of 

system can speed up if the system has transient growth. 

Here, the transient behavior of closed-loop dynamics are introduced to analyze the performance of 

a system. The transient behavior of system matrix are very hard to describe. Pseudospectra, whose 

function is adapted as an analyze tool, is used to estimate the transient behavior of a matrix. 

This paper has four parts. In section two, the way of ‘lifting’ the system is introduced where the 

SISO system can be transformed into MIMO system. In section three, the transient growth of a matrix 

and the reason for using pseudospectra for analyzing the transient growth is described. In last section 

the accuracy of the method of a known model is verified, and some remarks are concluded. 
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2. Lifted system representation 

2.1 norm optimal ILC  

The ILC control problem in this paper is studied in the lifted setting[7, 8]. (2.1) is a discrete-time, 

single-output linear time-invariant system 

 
( 1) ( ) ( )

( ) ( ) ( )

x k Ax k Bu k

y k Cx k d k
   (2.1) 

where， ( )y k  is the output ( )u k  is input. The system can be‘lifted' by noting that over the finite time 

horizon[9]. 
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where 

1

0 ( )

( )i i

i m
p

CA B i m
 , 

ip are the system Markov parameters, m  is the relative degree, , 1, , 1k m m m N   

The ILC controller for contour tracking problem results from a quadratic optimization problem[10]. 

For this problem, an objective function J should be minimizing,  

 1 1 1 1 1 1( ) ( )T T T
j j j j j j j jJ e Qe u Su u u R u u    (2.3) 

1j r ie y y , ry  is the reference signal and (Q, R, S) symmetric positive definite matrices 

(often (Q, R, S) =: (qI, rI, sI)). Note that in some cases (Q, R, S) may be semi-definite matrices, as 

long as TP QP R S  is positive definite. 

where corresponding to the sum of weighted norms of the error 1j Q
e  defined by 1 1

T
j je Qe  , the 

command signal 1j S
u  defined by 1 1( ) ( )T

j j j ju u R u u  , and the rate of change of the 

command signal 1j j R
u u  defined by 1 1

T
j ju Su  , 

Combining r j jy e Pu and 1 1j r je y Pu , we can get  

 1 1( )j j j je e P u u    

 (2.4) 

By replacing (2.4) in (2.3) and subsequently differentiating J with respect to 1ju  and setting this 

derivative equal to zero, the norm-optimal ILC controller can be calculated. 

The ILC problem is to select 𝑢𝑗 using the historical error from previous trials to reduce the error 

asymptotically. A common method of the first-order linear ILC updating  

algorithm is given by 

 1 +j j ju u eQ L    

 (2.5) 

where Q and L are in N N . 
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Combining(2.2) with (2.5), closed-loop control input can be given by 

 1 0j ju Tu f    

 (2.6) 

where, ( )T I PQ L , and 0 0f eQ L . 

To analyze the transient behavior of an exponentially convergent ILC system, defining 

 limj ju u    (2.7) 

 and 

 j ju u    (2.8) 

According to (2.6), following conclusions can be drawn 

 1j ju T uQ    (2.9) 

or 

 1 1
j

j u T u    (2.10) 

The sequence 

 2, , , jT T T    (2.11) 

gives the worst-case bound on the overall decay or transient growth of ju  during learning. The 

special case 1T  are referred to as monotonic convergence because the bounding sequence is 

necessarily monotonically decreasing,  
1j j jT T T T  . 

Obviously, transient behavior of the system can be determined by analyzing matrix T. 

2.2 Lifted system representation of feedback system 

A feedback control system configuration is shown in Fig. 1, where k is the controller, uk is its output. 

P is the plant , w is the disturbance is the noise, r is the reference sign, and u is a feedforward control. 

k P
r e uk

u w

-

y ν 
 

Fig. 1 Configuration of feedback control system  

The SISO plant P can be described by the state space equation 

 1 ( )
:

P P
k k k k d k

P
k k k

x Ax B uk u B w
P

y Cx
    (2.12) 

where v and w are assumed Gaussian white noise.  

The controller is given as followsing 

 1

,

( )
:

( )

c c
k K k K k k

c
K k K k K k k

x A x B r y
K

u C x D r y
   

 (2.13) 

The closed loop system is given by 

 1: k T k K k

k T k k k

x A x B
T

e C x D
  (2.14) 
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where 
1 2 3 4

1 2 3 4
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,[ , , ]T T
k k k ku r  , 

The task of this system is to follow a desired reference signal r with finite length N. The task is that 

the system repeats over a set of trials, computing u in such a way as to converge to a sufficiently small 

error e. 

The lifted system of (2.14) is [11]  

 1 2 3 4 0P :  l l l l l
xe Pu P P P r P x    

 (2.15) 

where the lifted input lu  represents the input to the system in the thl  trial: 

0 1 1: [ , , , ]l N l l l T
Nu u u u  . 

the lifted representation of the error in trial l is given by 0 1 1: [ , , ]l N l l l T
Ne e e e  

and 

0

1 0
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0

i
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where  
1

0 , 1,2i i i i
i k T TG D G C A B k  . 1: ( ( ) ( ) )T N T

x T T T T TP C C A C A  

The map 𝑃1  will be considered only, since it’s role is essential to the design of learning 

controllers. 

3. Transient behavior of a matrix 

Let nA  be a complex n n  matrix. The critical behavior of the norms k
nA is of considerable 

interest in connection with several problems. Critical behavior means that the norms of the powers 

grow exponentially to infinity or that they run through a critical transient phase before decaying 

exponentially to zero. The norm of k
nA  converges to zero when k , where .  is spectral 

norm if and only if the spectral radius of nA ( ( )nA ) is less than one[12]. However, sole knowledge of 

the spectral radius or even of all eigenvalues of 𝐴𝑛, does not tell us whether the norms k
nA  run 

through a critical transient phase, that is, whether there is k, for which k
nA , becomes very large 

before eventually decaying exponentially to zero. 

3.1 Pseudospectra 

The spectrum of a matrix is the set of all its eigenvalues, the ε-pseudospectrum of matrix T is defined 

as 

 : ( ),z C z X and X -T    (3.1) 

where ε is a fixed value, ( )T  is the matrix T spectrum When ε takes a different value, it represents 
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the pseudospectral of the different ranges of the matrix. Pseudospectral is shown in Fig. 2 diagram of a 

Demmel matrix. The black dots in the Fig. 2 are the eigenvalues of the matrix. The left side shows 

different values of ε to obtain different pseudospectral boundaries. The border color corresponds to the 

right-side color bar. The bars indicate that ε takes an index of different logarithms. 

For the first-order discrete system 

 1k kx Ax    (3.2) 

whose pseudospectral radius is defined as: 

 ( ) max{ : ( )}A z z A    (3.3) 

dim = 3
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Fig. 2 pseudospectra of Demmel matrix 

3.2 Analyze of transient growth 

The role of pseudospectra in connection with the norms of powers of matrices and operators is as 

follows: norms of powers can be related to the resolvent norm, and pseudospectra decode information 

about the resolvent norm in a visual manner. A relation between resolvent and power norms is 

established by the Kreiss matrix theorem[13]. 

Kreiss Matrix Theorem 

For any n n  matrix T , it has the following conclusion  

 
0 0

( ) 1 ( ) 1
sup sup supk

k

T T
T en    (3.4) 

where e is the exponential constant, ( )T is the 𝜀 − pseudospectra radius of matrix.            

( ) max{ : ( )}T z z T  

( ) : ( ),T z C z X and X -T   

where ( )X  is all eigenvalue of the matrix X. If the matrix T is normal, then (2.11) is trivially given 

by ( )k kT T  for all k. 

0

( ) 1
sup

T
 is called Kreiss constant, which gives upper and lower bounds on the maximum 

transient growth. However it is difficult to compute the constant. Therefore, plots of pseudospectra are 

often used to estimate the magnitude of transient growth.  

To show the visualisation aspect of the pseudospectra, the following two matrices are considered  

1 2

0.9 0 0.9 0
, T

10 0.9 0.1 0.9
T
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(a)the pseudospectra of 𝑇1             (b) the pseudospectra of 𝑇2 

Fig. 3  the pseudospectra of 𝑇1 and 𝑇2      
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Fig. 4 transient behavior of 𝑇1and 𝑇2. 

The boundaries (or level sets) of pseudospectra for these Matrices for various values of ε computed 

using Eigtool[14] is shown in Fig. 3. The eigenvalues are located at 0.9 for each matrix of system, but 

the pseudospectra of each matrix are rather different. The pseudospectra of 𝑇2 are clustered closely 

around its eigenvalues, 𝑇1’s are much larger, its pseudospectra extend well outside of the unit circle, 

even for very small values of ε. This phenomenon can be used to check whether transient growth 

exists. Thus, Fig. 3 indicates that transient growth is expected for 𝑇1. This is verified by direct 

computations of the transients 𝑇1and 𝑇2,  in Fig. 4   

Accoding to the research of transient behavior in ILC[2-6]，the transient growth are limited to the 

acceptable range that making system stable, and the convergence rate of the system can be speed up 

simultaneously. 

3.3 Advantageous of Pseudospectral  

It is true that for a purely linear, constant-coefficient, homogeneous problem, eigenvalues govern the 

asymptotic behavior as t . If the problem is normal, this statement is robust; the eigenvalue also 

has relevance to short-time or transient behavior, and moreover, their influence tends to persist if the 

problem is altered in small ways. If the problem is far from normal, however, conclusions based on 

eigenvalues are in general not robust. Firstly, there may be a long transient that looks quite different 

from the asymptote and has no connection to the eigenvalues. Secondly, the asymptote may change 

beyond recognition if the problem is modified slightly. Eigenvalues do not always govern the transient 

behavior of a nonnormal system, nor the asymptotic behavior in the presence of nonlinear terms, 

variable coefficients, lower order terms, inhomogeneous forcing data, or other complications. Few 

applied problems are free of all these effects, where it is rare that one is interested so purely in the limit 
t  as one may at first imagine. These issues are at the heart of convergence and stability 

investigations in numerical analyze. 

4. Example 

In this section, a servo control problem is considered for a typical fourth order mechanical system[9]. 
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The plant and the feedback controller are given in equation (4.1) and (4.2) respectively. The servo task 

is considered with a duration of 200 samples.  

 

3

3.9050 1.451 0.9732 0.4970 0.0019

4 0 0 0 0

0 1 0 0 0

0 0 0 0.5 0

10 (0.4780 1.3605 1.3049 0.2381 0

A B

C D

   (4.1) 

 
0.9048 1

0.8564 10
K K

K K

A B

C D
   (4.2) 

As described in section 2, transition matrix T is used to analyze the transient behavior of the system. 

Three norm-optimal ILCs are designed with different R weightings, as listed in Table 1. 

Table 1 Weighting matrices for norm-optimal ILC example 

q s r design 

100 0.1 120000 𝑇1 

100 0.1 110000 𝑇2 

100 0.1 1900000 𝑇3 
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Fig. 5 Learning transient bound for norm-optimal ILC designs 

 (a)The pseudospectra of 𝑇1      (b) The pseudospectra of 𝑇2     (c) The pseudospectra of 𝑇3 

Fig. 6 The pseudospectra of  𝑇1,  𝑇2 and 𝑇3 

Three norm-optimal ILC’s are designed with different R weightings (Table 1). A check of the RMC 

condition will show that two (𝑇1 and 𝑇2) of three designs are not RMC[15] . From Fig. 5 it can be 

found that 𝑇3 follows the condition of RMC，whose convergence rate is slower than 𝑇1 and 𝑇2. 

With the increase in r , convergence rate will speed up, if transient growth is allowed. It can also find 

in Fig. 5 that the 𝑇1 and 𝑇2 are the conditions which do not follow the rule of  RMC, whereas 

convergence rate , of 𝑇1 and 𝑇2 is faster than 𝑇3, as designed in Fig. 5. In the case of non-monotonic 

convergence, increasing the r follows the condition that decreases the transient growth[15, 16], but it also 

speeds up convergence rate, which is different from some conclusion of paper[17]. It may be affected by 

the characteristics of the model itself. 

Increasing r will pull the levels sets in closer to the eigenvalues, while also moving some of the 
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eigenvalues farther from the origin. Tighter grouping of ε-pseudospectrum of T , the levels reduce the 

magnitude of the transient growth, while shifting eigenvalues away from the origin accounts for the 

slower convergence rate observed at large iterations. In Fig. 6, from the pseudospectra of 𝑇1 and 𝑇2, 

it can be found that fix the ε=10−1.2  , then substitute various values of  R, let the bound of 

pseudospectra makes R's border within the unit circle near the unit circle, so it can faster convergence 

rate. Calculations using several other system perturbations by the authors have yielded the same trend 

demonstrated here. The pseudospectra of 𝑇3 shows that the difference choice of ε is very close to the 

eigenvalue of 𝑇3 , although it follows the rule of RMC, whose convergence rate is slower than 𝑇1 

and 𝑇2. 

5. Conclusion 

Transient growth is an undesirable property in ILC, while robust monotonic convergence is a 

performance-limiting constraint. Thus, it is reasonable to consider some transient growth as a trade-off 

for improved performance. Pseudospectra is introduced to calculate and bound transient growth. 

Significantly, the pseudospectra also affords a mathematical basis that illuminates the often 

misunderstood topic of transient growth in ILC. Norm optimization and pseudospectra are combined 

to predict the transient peaking. It’s convergence rate weighting factor R plays an important role in 

reducing transients. These results cannot be gained using eigenvalue or singular value analyze, but in 

its place are only evident using pseudospectral analyze. 
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