
IOP Conference Series: Materials Science and Engineering

PAPER • OPEN ACCESS

SDN Flow Entry Adaptive Timeout Mechanism based on Resource
Preference

To cite this article: Ziyong Li et al 2019 IOP Conf. Ser.: Mater. Sci. Eng. 569 042018

View the article online for updates and enhancements.

This content was downloaded from IP address 101.27.23.156 on 14/10/2019 at 22:00

https://doi.org/10.1088/1757-899X/569/4/042018

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

AMIMA 2019

IOP Conf. Series: Materials Science and Engineering 569 (2019) 042018

IOP Publishing

doi:10.1088/1757-899X/569/4/042018

1

SDN Flow Entry Adaptive Timeout Mechanism based on

Resource Preference

Ziyong Li*, Yuxiang Hu, Xueshuai Zhang

National Digital Switching System Engineering and Technology Research Center,

Zhengzhou 450002, China

*Corresponding author’s e-mail: 17629352940@163.com

Abstract. Software-defined networking brings rich and more efficient means to network

control management. However, the fixed timeout mechanism of flow entry causes the waste of

flow table resources and controller computing resources. This paper proposes an SDN flow

entry adaptive timeout mechanism. The mechanism allocates a suitable timeout for different

flows based on the characteristics of the data flow, and dynamically adjusts idle timeout value

to prevent the flow table from overflowing. The experimental results show that the proposed

adaptive timeout mechanism can make full use of flow table resources and controller

computing resources to achieve higher average network throughput.

1. Introduction

In recent years, with the continuous enrichment of internet applications and the explosive development

of network traffic, SDN has emerged as a new type of network architecture. SDN provides

fine-grained data flow control functions through the centralized control plane and open programmable

data plane, thus supporting flexible network management and agile service innovation [1].

The control policy of SDN network needs to be installed into the switch flow table. Currently, in

order to guarantee good forwarding performance, the flow entries are mostly stored in TCAM (Ternary

Content Addressable Memory). However, considering the disadvantages of TCAM technology, such as

high cost and high power consumption, the TCAM storage space is limited [2]. The cost per Mbit

TCAM chip is about 400 times higher than that of RAM chip with the same size. Therefore, the

TCAM storage space provided by switches is very limited (supporting 2k~4k rules [3]), which often

cannot meet the needs of large-scale networks. The SDN data plane faces serious shortage of flow

table resources.

Limited flow table resources and controller computing resources may cause network scalability

problems [4]. Huang et al. [5] found that the setting of idle timeout value will affect both types of

limited resources. As shown in Fig. 1, when the idle timeout value is set to be too small, the flow table

resource can be fully utilized. However, the controller needs to process more packet-in messages at

this time, and the controller's computing load increases accordingly. When the idle timeout value is set

too large, the number of flow requests processed by the controller is reduced, but the flow table

resources are not fully utilized at this time, because the redundant flow table rules will occupy the

TCAM storage space, causing unnecessary redundancy and overhead. In addition, the mouse flow in

the network occupies 80% of the flow, elephant flow only accounts for 20% [6], these large number of

mouse flows will inevitably occupy a large number of flow table resources and controller computing

resources, so we should dynamically set the idle timeout of the flow entry to make full use of flow

table resources and controller computing resources.

AMIMA 2019

IOP Conf. Series: Materials Science and Engineering 569 (2019) 042018

IOP Publishing

doi:10.1088/1757-899X/569/4/042018

2

Packet-in Idle_timeout

t

Packet-in Idle_timeout

t

(a) Too small timeout (b) Too large timeout

Fig. 1 Example of a too small timeout and a too large timeout

Due to the different durations of flows, it is more reasonable to design a dynamically changing

timeout threshold. AHTM [7] and TimeoutX [8] proposed that the duration characteristics of flows

based on queuing system modeling and actual measurement, and combined the flow table resources

and controller computing resource to optimize the hard timeout mechanism. Liang [9] analyzed the

idle timeout mechanism of OpenFlow based on the ON/OFF traffic model, and gave the upper and

lower bounds of the timeout threshold that meets the resource limit. Huang [10] comprehensively

considered the two costs of controller computing resource and flow table resource, and optimized the

strategy of whether the new incoming flow is cached and how long the timeout threshold is set.

In this paper, we study the impact of idle timeout on the flow table resource and the controller

computing resource qualitatively and how to set the idle timeout value according to the current SDN

network resource state. Our goal is to set the reasonable idle timeout value when assigning switch flow

table resources to achieve timely deletion of idle flow entries, and to consider controller computing

resources and flow table storage resources to increase network average throughput.

2. Models and analysis

2.1 ON/OFF model of data flow

As shown in Fig. 2, a data flow can be modeled as a typical ON/OFF model [11]. The ON state

indicates that the packet length X1, X2, ..., Xn, and the OFF state indicates that the packet interval

lengths Y1, Y2, ..., Yn. In this model, the ON state and the OFF state are mutually independent random

variables. It can be known from the literature [12] that X1, X2, ..., Xn are independent and identically

distributed, obeying the Pareto distribution, and the packet intervals Y1, Y2, ..., Yn are equally

independent and distributed, obeying the exponential distribution.

XnXiX3X2
X1

PACKET_IN

t

...

...

Y1
Y2 Yn

Fig. 2 The ON / OFF model of the data flow

2.2 Quantitative analysis of the impact of idle timeout

2.2.1 Flow Table Resource Overhead

The lifetime of each flow entry can be composed of two parts, including active time and invalid time.

AMIMA 2019

IOP Conf. Series: Materials Science and Engineering 569 (2019) 042018

IOP Publishing

doi:10.1088/1757-899X/569/4/042018

3

The active lifetime refers to the time period in which the flow entry has a matching data flow. On the

contrary, the invalid lifetime indicates the time period in which the flow entry exists but no data flow

matches.

The active lifetime is actually the transmission time of the data flow. For the ON state, the active

lifetime of the flow entry is
n

i

i

X . It can be seen that the active lifetime of the flow table is

independent of the setting of idle timeout, and there is no way to change the value by setting idle

timeout. When the value of idle timeout is set to tidle, the invalid lifetime of the flow entry is derived as

Equation (1):

1

(,) lim () (,)
n

idle i idle i idle idle
n

i

G Y t Y t Y f Y t t
→

=

= − +

=
1

lim () ()
n

i idle i i idle
n

i

Y t Y Y t
→

=

+ − − (1)

The invalid lifetime reflects the invalid usage of the flow table entry for the switch flow table

resource, and also reflects the utilization of the flow entry. The smaller the invalid lifetime, the more

fully the flow table entry is utilized. According to qualitative analysis, the smaller the idle timeout

value, the smaller the invalid lifetime. Therefore, the invalid lifetime of the flow entry is used here to

represent the flow table resource overhead. Normalize the flow table resource overhead, the results are

as follows:

1

(,)
(,) 1 idletidle

idle n

i

i

G Y t
g Y t e

Y

−

=

= = −


 (2)

2.2.2 Controller computing resource overhead

When the flow entry in the OpenFlow switch is deleted because of i idleY t , the subsequent data flow

will generate a packet-in message, and the controller needs to process the packet-in message generated

and re-add the flow entry to the switch. In fact, the number of packet-in message is a major factor in

measuring controller load. Therefore, we use the packet-in message as the controller computing

resource overhead. It is assumed that the calculation cost of the controller processing a single

packet-in message is a fixed value, so the controller computing resource overhead is described in

equation (3). It is normalized to equation (4).
(,) (,) costidle idleZ Y t f Y t=  (3)

(,) (,)
(,) lim lim

cos
idletidle idle

idle
n n

Z Y t f Y t
z Y t e

t n n

−

→ →
= = =


 (4)

2.2.3. Resource preference degree

According to the analysis of the data flow, the elephant flow needs to be divided into multiple data

packets to be forwarded, it is more likely that more packet-in messages are generated because the flow

entry times out. The mouse flow contains fewer packets, but the number is larger and requires more

flow table resources. It can be seen that the elephant flow prefers the controller computing resources,

while the mouse flow prefers the flow table resources. Therefore, we define controller computing

resource preference and flow table resource preference to reflect the dependence of data flow on

controller computing resources and flow table resources.

The average bandwidth of the data flow in the network is represented by d, and the number of flow

is represented by r, and the number of packets a flow contains is n. Therefore, the flow table resource

preference  and the computing resource preference  can be defined as follows:

()
n

g
r

 = , ()
n

g
d r

 =


 (5)

The function g(.) represents the resource preference function indicating the relationship between

AMIMA 2019

IOP Conf. Series: Materials Science and Engineering 569 (2019) 042018

IOP Publishing

doi:10.1088/1757-899X/569/4/042018

4

the resource preference degree  ,  and the number of data packets n, the number of data flow r,

the average bandwidth of the flow d. The default value of the flow table resources preference and the

controller computing resource preference is 0.5. It can be seen from the above formula that when the

number of flows is large, more flows are requested to obtain flow table resources, and the flow table

resource preference of the flows needs to be reduced. When the network traffic is high, the computing

resource preference of the flows needs to be reduced.

2.3 flow Entry adaptive timeout problem

In order to get a reasonable idle timeout value of the flow entry, we have the following objective

function.

(,) (,) (1) (,)idle idle idlec Y t g Y t z Y t = + − (6)

It can be seen that our optimization objective is to set reasonable idle timeout idlet to balance the

controller computing resource overhead and the flow table resource overhead.  and  are

weighted parameters representing the flow table resource preference and computing resource

preference calculated according to the current network state.

3. SDN flow Entry adaptive timeout mechanism

3.1. Algorithm Design

The algorithm mainly considers the limitation of controller computing resources and switch flow table

resources based on network state and data flow characteristics. Therefore, when the new flow arrives

at the switch, the following processing process must be implemented:

(1)It will calculate the flow table resource overhead and the controller computing resource

overhead of the flow according to equations (2) and (4).

(2)The controller will update the flow average bandwidth d and the number of flow r, and obtain

the traffic information, and then adjust the flow table resource preference and computing resources

preference by the formula (5).

(3)The idle timeout value will be set to balance flow the table resource overhead and the computing

resource overhead.

The detailed process of the algorithm is shown in Algorithm 1.

Algorithm 1 flow table adaptive timeout algorithm

Input: the average bandwidth of flow: d, the number of flow: r

 the bandwidth requirement: p, the number of packets: n

Output: the idle timeout of flow table entry: Tidle

1 ） Initialization parameter: unit resource overhead cost,
0.5 = =

2）Set the default idle timeout value: Tinital

3) Repeat

4） Updating network status information when the data flow

arrives.

5） Calculating the values (,)idlex t T , (,)idley t T and adjusting the

parameters ,  .

6） Generating a Tidle and updating the idle timeout value of the

flow entry.

7) When (,)idlec Y t Z reaches a minimum, the algorithm terminates.

3.2. Cache based timeout prediction module

It is not an easy task to assign a completely correct timeout for different flows because the controller

cannot determine the packet arrival interval. To accomplish this task, we propose a scheme to predict

AMIMA 2019

IOP Conf. Series: Materials Science and Engineering 569 (2019) 042018

IOP Publishing

doi:10.1088/1757-899X/569/4/042018

5

the timeout of a flow entry by adding a cache module in the control plane, as shown in Fig. 3.

Timeout prediction
mechanism

Cache module

Controller Switch

Packet-in

Set timeout=Tinit

Timeout expire

Packet-in again

Set timeout=Tnew

History
information

Tnew=min{T+t,tmax}

Update

Fig. 3 Cache based timeout prediction module

Its work process is as follows: when the new flow arrives, it will generate a packet-in message to

the controller. The controller then assigns an initial idle timeout value to this flow entry. It can be set to

1s because the packet interval for most flows is within 1 s. After the flow table entry beyond idle

timeout, the switch removes it from the flow table and sends the delete message to the controller. The

cache module in the controller will then record this expiration rule using the timestamp and its idle

timeout. Once the same flow triggers the packet-in event again, the controller will use the information

stored in the cache to determine its idle timeout value.

maxmin{ , }newt T t t= +  （7）

t indicates the time interval at which the flow triggers the Packet-in event again and the last

packet ends. T is a constant used to indicate potential fluctuations in the interval between packets.

maxt is the maximum value of the idle timeout, preventing it from being set too large and causing the

flow table to overflow. The formula (7) indicates that when the flow triggers the Packet-in event again,

it indicates that the previously set timeout value is too small, so it is necessary to set a longer timeout

value according to the information in the cache module to adapt to the arrival time of the data packet.

4. Simulation results

The simulation selects RYU as the experimental controller and tests on the network simulation

platform Mininet. The RYU controller is written in Python and supports multiple versions of the

OpenFlow protocol. In order to improve the efficiency of the experiment, the RYU controller and

Mininet are deployed as virtual machines on two different physical hosts. The virtual machine is

Ubuntu Server 16.04, equipped with Intel Core i7-3770 3.40 GHz processor and 8 GB of memory. In

the simulation, the flow entry will only be deleted due to the idle timeout. The number of flow entries

in the SDN switch and the number of packet-in messages that the controller needs to process per

second can be obtained by sampling.

We compare the two indicators, namely the flow table matching rate, and the number of active flow

tables, to the fixed timeout mechanism.

(1) Flow table matching rate

Fig. 4 shows the variation of the flow table matching rate over a period of time. As can be seen

from the Fig. 4, the flow matching rate of the adaptive mechanism is always above 80%. Because the

adaptive mechanism can dynamically adjust the idle timeout value. It can adjust the resource

preference factor through the feedback mechanism to set a reasonable idle timeout value, speeding up

the elimination of flow entries with low matching rate, thereby improving the utilization of flow table

resources.

AMIMA 2019

IOP Conf. Series: Materials Science and Engineering 569 (2019) 042018

IOP Publishing

doi:10.1088/1757-899X/569/4/042018

6

Fig. 4 Flow matching rate Fig. 5 Number of active flow entries

(2) Number of active flow entries

The Fig. 5 shows the number of active flow entries over a period of time. It can be seen that there

are always more than half of the idle flow entries in the fixed mechanism, which seriously wastes the

flow table space and affects the performance of the switch. The active flow table entries of the

adaptive mechanism is fully utilized, and the performance of the switch is fully utilized.

5. Conclusions

In this paper, an adaptive flow entry timeout mechanism based on resource preference is proposed to

balance the limited flow table resource and controller computing resource. To set a reasonable idle

timeout value of the flow entry, we introduce the concept of flow table resource overhead, controller

computing resource overhead, and resource preference according to the current network state and data

flow characteristics. In addition, we design the flow Entry adaptive timeout mechanism. Our

mechanism can set a different idle timeout for different flows according to flow characteristics to

prevent the flow table from overflowing. The experimental results show that the proposed flow entry

adaptive timeout mechanism can make full use of flow table resources and controller computing

resources to achieve higher network average throughput.

Acknowledgments

This work is supported by the National Natural Science Foundation of China for Innovative Research

Groups (61521003), the National Natural Science Foundation of China (61872382), the National Key

Research and Development Program of China (2017YFB0803204), and the Research and

Development Program in Key Areas of Guangdong Province (No.2018B010113001).

Reference

[1] Karakus M, Durresi A. A Survey: Control Plane Scalability Issues and Approaches in

Software-Defined Networking (SDN)[J]. Computer Networks, 2016, 112:279-293.

[2] Liu A X, Gouda M G. Complete redundancy removal for packet classifiers in TCAMs[J]. IEEE

Transactions on Parallel and Distributed Systems, 2010, 21(4): 424-437.

[3] Stephens B, Cox A, Felter W, et al. PAST:scalable ethernet for data centers[C]. International

Conference on Emerging Networking Experiments and Technologies (CoNEXT). ACM,

2012:49-60.

[4] Tootoonchian A, Gorbunov S, Ganjali Y, et al. On Controller Performance in Software-defined

Networks[C]// Usenix Conference on Hot Topics in Management of Internet. USENIX

Association, 2012.

[5] Huang H , Guo S, Li P , et al. Cost Minimization for Rule Caching in Software Defined

Networking[J]. IEEE Transactions on Parallel and Distributed Systems, 2016,

27(4):1007-1016.

[6] Lan K C, Heidemann J. A measurement study of correlations of Internet flow characteristics[J].

Computer Networks, 2006, 50(1):46-62.

[7] Zhang L, Lin R, Xu S, et al. AHTM: Achieving efficient flow table utilization in Software

AMIMA 2019

IOP Conf. Series: Materials Science and Engineering 569 (2019) 042018

IOP Publishing

doi:10.1088/1757-899X/569/4/042018

7

Defined Networks[C]. IEEE Global Communications Conference. IEEE, 2014:1897-1902.

[8] Zhang L, Wang S, Xu S, et al. TimeoutX: An Adaptive Flow Table Management Method in

Software Defined Networks[C]. IEEE Global Communications Conference. IEEE, 2015:1-6.

[9] Liang H, Hong P, Li J, et al. Effective idle_timeout value for instant messaging in Software

Defined Networks[C]. IEEE International Conference on Communication Workshop. IEEE,

2015:352-356.

[10] Huang H, Guo S, Li P, Liang W, Albert Y. Zomaya. Cost minimization for rule caching in

software defined networking[J]. IEEE Transactions on Parallel and Distributed Systems,

2016, 27(4):1007-1016.

[11] Understanding the Nature of Social Mobile Instant Messaging in Cellular Networks[J]. IEEE

Communications Letters, 2014, 18(3):389-392.

[12] Study on GEANT4 code applications to dose calculation using imaging data[J]. Journal of the

Korean Physical Society, 2015, 67(1):195-198.

