
IOP Conference Series: Materials Science and Engineering

PAPER • OPEN ACCESS

A Fault Tree based Microservice Reliability Evaluation Model
To cite this article: Zhigang Zang et al 2019 IOP Conf. Ser.: Mater. Sci. Eng. 569 032069

View the article online for updates and enhancements.

This content was downloaded from IP address 1.197.16.7 on 18/09/2019 at 21:27

https://doi.org/10.1088/1757-899X/569/3/032069
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/760593016/Middle/IOPP/IOPs-Mid-MSE-pdf/IOPs-Mid-MSE-pdf.jpg/1?

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

AMIMA 2019

IOP Conf. Series: Materials Science and Engineering 569 (2019) 032069

IOP Publishing

doi:10.1088/1757-899X/569/3/032069

1

A Fault Tree based Microservice Reliability Evaluation Model

Zhigang Zang1*, Qiaoyan Wen2, Kangming Xu2

1 Zhongshiruian (Beijing) network Technology Co., Ltd., Beijing 100876, China

2 Network Security Institute, Beijing University of Posts and Telecommunications,

Beijing 100876, China

Email of all the authors: blue_oceans@163.com, wqy@bupt.edu.cn,

kangmingxu@126.com

* Corresponding Author: Zhigang Zang; email: blue_oceeans@163.com;

phone: 13811521772.

Abstract. The system based on microservice architecture is a trend of software system

development in the future. As there are many independent micro services in the system based on

micro services, the reliability evaluation of these micro services and the impact of their reliability

on the system reliability have become a problem worth studying. Based on the reliability

evaluation of the system based on the service dependency graph and the fault tree, this paper

proposes a scheme of automatically generating the service dependency graph with the help of the

service registry, and improving the reliability model of service fault tree. When establishing the

fault tree, the influence of the system's fault-tolerant mechanism and different probability of

execution path on the system reliability is taken into account, thus improving the accuracy of the

model analysis system fault rate.

1. Introduction

The design philosophy of the microservice architecture is based on the concept of an application-level

interactive workflow of SOA [4]. It allows developers to freely choose the development framework,

configuration environment and configuration methods during development, deployment, and debugging

[1]; and dynamically adjust the number of corresponding microservice instances based on service load

[2]. The systems based microservice are often a resilient system, and when one service fails, the system

may lose some of its functionality and the rest will still function properly. Since a microservice tends to

take on a small function, it doesn't have much code, which greatly simplifies developer development

and debugging. Today, Microservice architectures are being used by a growing number of companies,

such as Netflix[3], eBay, Twitter, Amazon.

Because there are many independently deployed microservices in the system, each microservice can

fail. How do these failures manifest and affect other microservices in the system? How to spread and

influence the final user experience in the system? [15].

One existing solution is to establish a service dependency graph and construct a fault tree according

to the service dependency graph [5] to analyze the impact of the microservice fault on the system. The

service dependency graph reflects the dependencies between the microservices. The fault tree is a

logical diagram showing the relationship between the key events in the system and the cause of the

event [6], and the fault tree analysis is the process of constructing the fault tree.

mailto:blue_oceans@163.com
mailto:wqy@bupt.edu.cn
mailto:kangmingxu@126.com
mailto:blue_oceeans@163.com

AMIMA 2019

IOP Conf. Series: Materials Science and Engineering 569 (2019) 032069

IOP Publishing

doi:10.1088/1757-899X/569/3/032069

2

This paper proposes a service dependency graph automatic generation scheme and fault tree model.

In this paper, the service registry is used to obtain the dependencies between microservices. The fault

tree model is designed for the system's error tolerance scheme, and the model is quantitatively analyzed

according to the execution probability of each execution path. The model has improved the accuracy of

the task execution simulation in the system, and can effectively analyze how the fault propagates in the

microservice architecture-based system and how it affects the entire system.

2. Related work

2.1. Service dependency graph generation scheme

A system based microservice contains many independently deployed micro services [7], which is

certainly good if the various components in the system can run successfully without any other

components. But in most practical situations, But in most practical situations, it is an island if there is no

other microservice. In a real user usage scenario, after a service is started, it can respond to API calls on

its own, but when implementing a specific function, it often requires coordination and cooperation of

several services.

The service dependency graph is essentially a directed graph, originally used to reflect the data flow

and control flow between various system modules. Each vertex in the graph represents a microservice in

the system; the directed edge points from the service consumer to the service provider, indicating the

dependencies between services. The microservices architecture is an abstract software architecture.

Each system can be defined by a number of abstract operations at many different levels [14]. The

specific granularity for the system description can be determined by the participants. Generally

speaking, in a directed graph, each vertex represents a microservice in the system. The content of the

dependency graph in Figure 1 is:

Service A depends on Service B and Service C;

Service C depends on Service D and Service E.

Service AService A

Service BService B Service CService C

Service DService D Service EService E

Figure 1. Example of a service dependency graph

2.2. Fault tree model construction algorithm

In his research [5], Johan Uhle refers to several elements in the fault tree element system of the Fuzzed

Editor [8], and constructs a fault tree model based on the service dependency graph. The fault tree

elements used in the model include: TOP event, AND-gate, OR-gate, Basic event, Intermediate event,

etc. Each event represents a node in the fault tree and is connected through a logic gate. The TOP event

indicates the system failure to be investigated, and the event that may cause the TOP event to occur is

defined as a new event. These new events are connected to the TOP event through the AND-gate and

AMIMA 2019

IOP Conf. Series: Materials Science and Engineering 569 (2019) 032069

IOP Publishing

doi:10.1088/1757-899X/569/3/032069

3

OR-gate. In the actual environment, the new event can be performed as shown above. Recursive

operation, thus analyzing the failure of any granularity of the system. The leaf nodes in the fault tree are

called Basic events; the nodes that are neither TOP events nor Basic events are called intermediate

events, the Intermediate events.

The specific steps to build a fault tree model based on the service dependency graph are as follows:

1. Convert the root vertex to a TOP event;

2. Create an OR-gate and connect it to the TOP event;

3. Create a basic event called root vertex and connect it to the OR-gate;

4. Follow each output edge of the current vertex (starting from the root vertex) to the next vertex:

a) Create an intermediate event with the next vertex name and connect it to the OR-gate of the

current vertex;

b) Create an OR-gate and connect it to an intermediate event;

c) Create a basic event with the next vertex name and connect it to the OR-gate;

d) Recursively repeat step 4 for the next vertex.

2.3. Introduction to the Eureka Framework

Eureka is a REST-based open source framework developed by Netflix [9]. The Eureka framework

usually consists of the Eureka server and the Eureka client. The Eureka server provides service

registration service to the outside. After each service in the system is started, it will be registered with

the Eureka server [10]. In this way, you can see information about all the services in the system on the

Eureka server. Each service sends a registration message to the service registry at the time of startup,

and sends a heartbeat packet to the service registry during the running of each service. When the service

is stopped, the service will send the unregistered information to the service registry. When the service

exits abnormally, the service registration information will also be invalid because the service registry

cannot receive the heartbeat packet sent by the service.

For Java applications, the Eureka framework provides a way to register Java client services with the

Restful API-based service registration method. The Java client registration method can be implemented

only by adding annotations to the application code [11]. For the service registration method of the

Restful API, each service needs to use the REST operation mode for service registration and service

discovery. By periodically sending messages to the Eureka service registration center for service

registration, the registration related configuration information of each service can be written in each

service. The configuration file includes, for example, the Eureka server address, service name, and so on.

After the registration of each service in the system is completed, the service registration center can view

the related information of each service in the system. The Eureka framework is shown in Figure 2 [12].

By default, the Eureka framework uses JSON as the communication protocol between Server and Client.

You can also choose to use your own implementation of the protocol instead, with very good scalability.

AMIMA 2019

IOP Conf. Series: Materials Science and Engineering 569 (2019) 032069

IOP Publishing

doi:10.1088/1757-899X/569/3/032069

4

Figure 2. Eureka framework architecture

The service registration and discovery methods based on the Eureka framework have good stability.

The system is highly available, flexible, and scalable through heartbeat detection, health check, and

client-side caching. In addition, the Eureka framework provides users with a monitoring interface that

allows users to visually see all registered service instances in the system. It is also very convenient to

cluster management of services in the system.

2.4. Graphviz open source toolkit

The input of Graphviz[13] open source toolkit is a description script written in DOT language. Through

the analysis of the description script, the points, edges and various custom graphics are analyzed, and

then drew according to the properties of each module. The author only needs to consider the

relationship between the nodes, and does not need to pay too much attention to the layout of the graphics

and the relative position of each node. Especially for more complex graphics, the automatic generation

of the Graphviz toolkit can save the user a lot of unnecessary trouble. This article uses the Graphviz

toolkit to complete the drawing of service dependency graphs and quantitative service fault trees.

3. Microservice reliability assessment model

If Service A depends on Service B, then the failure of Service B will also cause Service A to fail.

However, there is often a error tolerance mechanism in the system, so that even if service A depends on

service B, service B fails, and service A does not necessarily fail due to the existence of error tolerance.

In this paper, an evaluation model is designed based on the impact of error tolerance scheme on

microservice reliability.

3.1. Automated generation of service dependency graphs

This article automatically generates a service dependency graph based on the system service registry

and the configuration files of each microservice. The service registration center used in this paper

adopts the implementation strategy of client discovery, that is, the service registration module is

deployed in each service. After each micro service is started, the registration message is sent to the

service registration center to complete the service registration. The client directly queries the service

registry for the location of the service it wants to retrieve, and the service registry returns the location of

AMIMA 2019

IOP Conf. Series: Materials Science and Engineering 569 (2019) 032069

IOP Publishing

doi:10.1088/1757-899X/569/3/032069

5

the service. In the Eureka framework used in this article, if the microservice instance terminates or the

service registry does not receive a periodic heartbeat signal from the microservice instance, it will

trigger the service registry to delete the record corresponding to the instance in the registry, thereby

enabling the service registry service. The list can reflect the actual situation of the system in real time.

This article adds a custom parameter to the service registration message to describe the dependencies

of the current service and the error tolerance scheme designed for the service. This article divides the

commonly used error tolerance schemes in the system into the following two cases:

1. Service A depends on Service B, but the success or failure of Service B does not affect the

execution of Service A; it is marked with ET-no.

2. Service A depends on Service B and Service C. Service B and Service C can execute normally as

long as they have a normal execution; they are marked with ET-or.

The dependency graph generation module can obtain dependencies between microservices from the

service registry. The specific design architecture is shown in Figure 3. The process of automating the

generation of service dependency graphs is shown in Algorithm 1.

Register
center

Service AService A Service BService B …… Service CService C

Generator
Model

Dependency
Graph

Dependency
Graph

outputGet the Info

Register(addr, state, relation);

Figure 3. System architecture design

Algorithm 1 Auto-generation of service dependency graph

1. Microservices start and send register messages to the Register center:

Register(addr, state, relation); addr is the address where the service deployed,

state is the service’s running state; relation is the dependent relationship of the

service.

2. Obtain the microservices’ dependency relationship. The dependent graph

generate module send request to the Register center for the number of

microservices and dependency of each microservice. Generate the dot file

according to the dependent relationships; add start tag to the start of the system

and end tag to the end of the system, and if there exists error tolerance schema,

add error-tolerance tag ET-no or ET-or according to the schema.

3. Generate the dependency graph. Use the dot file generated in 2 as input, call the

java API of Graphviz to generate the dependency graph and output the graph to

the specified directory.

3.2. Qualitative fault tree model

This section describes how to convert the service dependency graph generated in the previous section

into a qualitative service fault tree. First, the dependency relations between microservices are obtained

from the service dependency graph. Since the dependency graph is a directed graph, we create a fault

graph according to Algorithm 2:

AMIMA 2019

IOP Conf. Series: Materials Science and Engineering 569 (2019) 032069

IOP Publishing

doi:10.1088/1757-899X/569/3/032069

6

Algorithm 2 Fault tree analysis

1. Add TOP event to the top of the root node, create an OR gate and connect its

output edge to the TOP event.

2. Create an event with name of the root node, connect this event to the above OR

gate as an input.

3. Create an event with name of the current node (start with the root node), if the

current node has outgoing edge(s), add a logic gate for the outgoing edge(s):

(1) If there exists no error-tolerance tag:

 1) Create an AND gate,

 2) Connect the event with name of current node to this AND gate as its

output,

 3) Create event(s) with name of the node(s) that the outgoing edge(s) of the

current node points to and use the event(s) as input(s) of the AND gate.

(2) If there exists error-tolerance tag(s):

 1) Create an OR gate,

 2) Connect the event with name of the current event to this OR gate as its

output,

 3) Create events with name the nodes that the outgoing edges of the current

node point to;

 In the case of ET-no tag, take these event(s) and additionally 1 as input(s) of

the OR gate, as shown in Fig 4;

 In the case of ET-or tag, take these events with name of nodes that the current

node points to as inputs of the OR gate, as shown in Fig 5.

Repeat this step recursively for next node (namely the nodes that the outgoing

edges of current node point to).

4. Mark the execution path existing in the system, mark the microservices in the

same path with the same tag.

The main idea of Algorithm 2 is: starting from the root node, until all nodes in the dependency graph

are converted into events, and connected through the AND-gate or OR-gate, the OR-gate between

multiple services that are dependent on the same service. The selection method is that if multiple

services that are dependent are located on different execution paths, different paths are often only

executed once; therefore, when one service depends on multiple services, and multiple services belong

to different execution paths, different For service input on the path, you need to choose to use the

OR-gate to connect; otherwise, you choose to use the AND-gate to connect. At this point, the generation

of a qualitative fault tree has been completed.

Service A

Service B

1

Service A

Service B Service C

Figure 4 Figure 5

AMIMA 2019

IOP Conf. Series: Materials Science and Engineering 569 (2019) 032069

IOP Publishing

doi:10.1088/1757-899X/569/3/032069

7

This article describes the fault tree using the DOT language. The DOT description file of the fault

tree generated by the above steps is used as an input of the Graphviz open source toolkit to draw a graph

of the system fault tree.

Here, taking the service dependency diagram shown in FIG. 1 as an example, the specific execution

process of the step of going out is explained, and the process of constructing the fault tree is as shown in

FIG. 6.

1. Add a TOP event to the output outside the root node (application A) and connect the TOP event to

the root node with an OR-gate;

2. Add a logic gate for the outgoing edge of application A. Here, application A has two outgoing

edges, that is, application A depends on two services, application B and application C, and has no error

tolerance flag, so create an AND-gate here. Application A is used as the output of the AND-gate, and

application B and application C are used as the inputs of the AND-gate;

3. For application B, since it has no edge, it does not need to continue the process.

4. For Service C, since it has two outbound edges, that is, application C depends on two services,

application D and application E, and has no error tolerance markup, it is connected to the dependent two

services through the AND-gate, here Create an AND-gate, use application C as the output of the

AND-gate, and use application D and application E as input to the AND-gate.

TOP event

Service A

TOP event

Service A

Service B Service C

TOP event

Service A

Service B Service C

Service D Service E

Figure 6 Process of building a fault tree

3.3. Quantitative fault tree model

Combining the historical data of the system operation, we estimate the probability of success of the

basic events in the qualitative fault tree, and generate a quantitative fault tree for calculating the

probability of success of the TOP event. The probability of success of the TOP event can be used to

evaluate the probability of success of the entire system. It can also analyze how the service

corresponding to the event affects the entire system by analyzing the impact of the probability of

success of the basic event on the probability of success of the TOP event.

AMIMA 2019

IOP Conf. Series: Materials Science and Engineering 569 (2019) 032069

IOP Publishing

doi:10.1088/1757-899X/569/3/032069

8

The model of the quantitative service fault tree in this section additionally considers the impact of

different execution path probabilities on the final TOP event in the system. The quantitative calculation

is as follows:

The probability of failure of each event is recorded as the probability of failure of the TOP event,

which is recorded as Event) P(TOP . In order to facilitate the calculation, the probability of success of

the output event P(out) is calculated first, and the probability of failure is P(out)-1P(Event)= .

For the case of the connection with the AND-gate, the probability of success of the output is the

product of the probability of success of each event input, as shown in Equation 1.

P(inN)*…*P(in1)=P(out) (1)

For the case of an OR-gate connection, the probability of success of the output satisfies Equation 2

and Equation 3, P(in*) represents the probability of success of the underlying event of the input,

*yprobabilit indicates the probability that the service was executed in the system:

1)P(inN)! (when yN;probabilit*P(inN)

++1pobability*P(in1)=P(out)

=


 (2)

1)=P(inN) exists there (when1; =P(out) (3)

In a system based on microservice architecture design, there are often many execution paths. During

the system operation, the probability of execution of different execution paths is also different. This

paper obtains the execution probability of different execution paths by the following methods. Since a

service is deployed and the assigned task is executed on the service, the execution status of the task on

the service can be obtained by monitoring, and the historical data of the service execution task can be

obtained through execution for a period of time. The historical data of each service operation in the

integrated system can obtain the probability that each execution path in the system is executed. The

probability that each path in the historical data is executed is added to the quantitative service fault tree.

The specific steps in using the path execution probability for the quantitative service fault tree are:

Step 1: Through the historical running data of the system, the execution probability of each

execution path in the system is obtained. For the basic events with multiple outgoing edges, the

execution probability of the path is marked on each of the outgoing edges;

Step 2: If there is a case of the error tolerance scheme ET-no, the execution probability of the path is

set to 1.

At this point, the generation of a quantitative service fault tree has been completed. The quantitative

service fault tree can be used to analyze the impact of basic events in the system on system operation. By

obtaining the success rate and failure rate of basic event execution, the success rate and failure rate of

the TOP event of the quantitative service fault tree can be calculated.

4. Summary

This paper proposes a scheme for automatically generating a service dependency graph. The custom

service registration request body saves the service dependency to the service registry. The service

dependency graph automatic generation module obtains the service dependency from the service

registry, and draws the service accordingly. The dependency graph can also obtain the service running

status of the current system from the service registry and dynamically update the service dependency

graph. Based on the above automatic generation service dependency graph scheme, this paper also

improves the fault tree model. Based on the fault tree model, the impact of the error tolerance

mechanism and the execution probability of different execution paths in the system on system reliability

is further considered.

References

[1] Merkel D. Docker: lightweight linux containers for consistent development and deployment [J].

Linux Journal, 2014, 2014(239): 2.

AMIMA 2019

IOP Conf. Series: Materials Science and Engineering 569 (2019) 032069

IOP Publishing

doi:10.1088/1757-899X/569/3/032069

9

[2] Gabbrielli M, Giallorenzo S, Guidi C, et al. Self-reconfiguring microservices[M] //Theory and

Practice of Formal Methods. Springer International Publishing, 2016: 194-210

[3] Cockcroft A. Migrating to microservices [J]. QCon London, 2014: 16-18.

[4] MacKenzie C M, Laskey K, McCabe F, et al. Reference model for service oriented architecture

1.0[J]. OASIS standard, 2006: 18.

[5] Uhle J, Tröger P. On dependability modeling in a deployed microservices architecture [D]. Master’s

thesis, University of Potsdam, Germany, 2014.

[6] Marvin Rausand and Arnljot Hø yland. System Reliability Theory: Models, Statistical Methods,

and Applications. 2nd Edition. Wiley-Interscience, 2003, p.664.

[7] Viennot N, Bell J, Geambasu R, et al. Synapse:a microservices architecture for

heterogeneous-database web applications[C]// 2015:1-16

[8] FuzzEd (Accessed on 28/05/2014). URL: http://fuzzed.org.

[9] Hunter II T. Service Discovery[M]//Advanced Microservices. Apress, 2017: 73-87

[10] Stubbs J, Moreira W, Dooley R. Distributed Systems of Microservices Using Docker and

Serfnode[C]// International Workshop on Science Gateways. IEEE, 2015:34-39.

[11] Sharma S. Mastering Microservices with Java[M]. Packt Publishing Ltd, 2016.

[12] Chris Richardson. Service Discovery in a Microservices Architecture[OL]. [2017-1-20].

http://www.codes51.com/article/detail_317884.html.

[13] Ellson J, Gansner E, Koutsofios L, et al. Graphviz—open source graph drawing

tools[C]//International Symposium on Graph Drawing. Springer, Berlin, Heidelberg, 2001:

483-484.

[14] Fielding R T, Taylor R N. Architectural styles and the design of network-based software

architectures[M]. Doctoral dissertation: University of California, Irvine, 2000.

[15] Li L, Liu J, Zhou Z, et al. Causal Inference Based Service Dependency Graph for Statistical Service

Fault Localization [C]//Semantics, Knowledge and Grids (SKG), 2014 10th International

Conference on. IEEE, 2014: 41-48.

http://fuzzed.org/

