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Abstract. In this paper, by modifying the smoothness factor of the third-order CWENO 

scheme, we present the two-parameter CWENO-NZ3 scheme to improve accuracy at critical 

points. We selected some classical examples for numerical simulation, such as one-

dimensional Sod shock tube, Shock-entropy wave interaction, Riemann problem with strong 

discontinuity and Rayleigh-Taylor instability problem. Numerically comparing with the 

classical third-order CWENO schemes, it is found that the improved schemes not only improve 

accuracy and resolution at the extreme points, but also reduce dissipation.  

1. Introduction 

Based on ENO scheme, through reconstructing weights of stencil of WENO scheme, it solves the 

problem of wasting a lot of computation in the smooth region of the solution of ENO [1]. Many 

scholars have also done a lot of research on WENO scheme, and have created various types of WENO 

scheme [2-4]. In 2005, Henrick et al. [5] found that the convergence condition of five-order WENO 

scheme is not sufficient, and the accuracy of continuous solutions at extreme points will reduce the 

order. In view of this defect, they proposed the concept of mapping weight and constructed a new 

weighted scheme WENO–M scheme. In 2008, Borges et al. [6] constructed a high resolution WENO–

Z scheme with lower dissipation by constructing global high order smooth factors through linear 

combination of low order candidate stencil smooth factors on the basis of classical WENO scheme. In 

2013, Yamaleey et al. [7] theoretically deduced a class of third-order energy-stable WENO scheme 

(ESWENO) by improving the global smooth factor in the third-order WENO scheme. Wu et al. [8-10] 

proposed an improved third-order WENO scheme (WENO–N3, WENO–NP3 and WENO–NN3) by 

introducing the global stencil smoothing factor through theoretical derivation, aiming at the linearity 

of the traditional third-order WENO–Z scheme that reduces the order at the extreme point. In 2016, 

Acker et al. [11] improved WENO–Z scheme by locally increasing the influence of non-smooth 

regions, and deduced the third-order WENO–Z3+ and fifth-order WENO –Z5+ schemes with high 

resolution. 

The above WENO schemes are essentially upwind TVD schemes. With the development of the 

central schemes, many scholars have combined WENO scheme and the central scheme to construct 

many improved central schemes with high accuracy and high resolution. Levy et al. [12] firstly 

combined the full discrete central scheme with the reconstruction idea of WENO scheme, and 

constructed a new class of WENO scheme, the central WENO scheme (CWENO). Since the CWENO 

http://math.xtu.edu.cn/myphp/math/lab/index.html


AMIMA 2019

IOP Conf. Series: Materials Science and Engineering 569 (2019) 032031

IOP Publishing

doi:10.1088/1757-899X/569/3/032031

2

 
 
 
 
 
 

scheme not only has the advantages of the central scheme not limited to specific problems, but also 

has the physical properties of upwind scheme. Since the concept of the CWENO scheme was put 

forward, it has been widely concerned by scholars. In 2002, Qiu and Shu [13] constructed a class of 

the fifth-order CWENO schemes by using Lax-Wendroff time discretization, and then they further 

improved accuracy of CWENO scheme to ninth order. In 2018, take advantage of the low dissipation 

and high resolution of WENO-Z scheme, Cravero et al. [14] firstly introduced weight coefficient of 

WENO-Z scheme into CWENO scheme, and established a new CWENO-Z scheme with higher 

resolution. 

On the basis of the above research, we reconstruct the two-parameter CWENO-NZ3 scheme by 

modifying the smoothness factor. 

2. Governing equation 

The one-dimensional hyperbolic conservation law equation can be represented as 

                           
( ) ,0=+ xt ufu                                                                   (1) 

Suppose the solution region [a,b] is divided as 

                 
,21212321 bxxxxa NN == +−
 
                                      (2) 

The center is ( )21j21j
2

1
+− += xxx j

 
in the cell  21j21j , +−= xxI j , and cell sizes 

j 1 2 j 1 2jx x x+ − = − . Then we define the average value ( )dxxu
x

u
jI

j 
= nt,

1

 
in the cell jI . So that 

the integration of (1) over the rectangle    1

1 ,, +

+  nn

jj ttxx
 
divided by jx is the following semi-

discrete form 

                     
( ) ,0

1
2121 =−


+ −+ jjj ff

x
u

dt

d
                                                   (3) 

where

 
21jf  indicate the flux at 

2/1j
x

. 

Assume the value of
 21ju

 
have been restructured. In order to transform (3) into a finite volume 

scheme, the flux should be expressed by the cell average value .
j

u
. 

Considering the solution of (1) 

must satisfy upwind characteristics, we suppose ( )L

j

R

jj uuff 212121 ,ˆ
 = , where f̂ satisfies 

monotonicity, compatibility and local Lipschitz continuity. In this paper, we will use the following 

Lax-Friedrichs numerical flux 

            
( ) ( )( ),

2

1
,ˆ

21212121212121

L

j

R

jj

L

j

R

j

L

j

R

j uucffuuf  −−+=                            (4) 

where, ( )R

j

R

j uff 2121  = , ( )L

j

L

j uff 2121  = . 
L

ju 21 and
 

R

ju 21 are values on the left and right sides of 

points 
2/1j

x ,  which will be reconstructed from the following third-order and fifth-order CWENO 

schemes. And 21jc indicate spectral radius of Jacobian matrix corresponding to (1) at the points 

2/1j
x . Time evolution of the governing equation will be carried out by the classical third-order 

Runge-Kutta TVD scheme. 

3. Third-order CWENO schemes 

We reconstruct a quadratic polynomial 
( )xPj

~

 as the convex combination of three order linear 

polynomials  of 
( )xPn

j 1− ,
( )xPn

j  and 
( )xPn

j 1+  in every cell 
 21j21j , +−= xxI j ,       
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( ) ( ) ( ) ( ),

~
1111 xPxPxPxP n

j

n

j

n

j

n

j

n

j

n

jj ++−− ++= 
 
                                      (5) 

where ( )1,,1 +−= jjjkn
k is weight coefficient, 1=k

n

k . The polynomials ( )xPn

j 1−  and ( )xPn

j 1+  
correspond to one-sided linear reconstruction on the left and right sides, however the polynomial 

( )xPn

j  
is a parabola at central point

jx . 

( ) ( )1

1 ,
j jn

jj j

u u
P x u x x

x

−

−

−
= + −

   

( ) ( ) ( ) ( )1 1 1

1 , .
2

j j j jn n
j jj j j j

u u u u
P x u x x P x u x x

x x

+ + −

+

− −
= + − = + −

                         (6)     

It is noted that ( )xPn

j  is only a parabola which satisfies the conservation of 
n

ju 1− 、
n

ju
 
and 

n

ju 1+
 
on 

three grids. Therefore, the polynomial can be rewritten  

               
( ) ( ) ( ) ,

2

1~ 2

jjjj xxuxxuuxP −+−+=                                             (7)
 

where ju
and derivative ju

 and ju 
are given as follows 
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 3.1. CWENO-JS3 scheme 

The so-called CWENO-JS3 [2] are defined by 

              

1,,1
11

+−=
++

=
+−

jjjk
n
j

n
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where 

( )
1, , 1n k

k q
n

k

C
k j j j

IS



= = − +

+
， . Constants kC are linear weights which are defined as

 

4111 == +− jj CC , 21=jC . The constant   is used to ensure the denominator is not zero , 
610−=

and 2=q . 
n

kIS
 
are smoothness factor, 
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1 2
1
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x
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+ −
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=
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( )( )xP l

k  is the order-l derivative of ( )xPk . Then we can calculate integrals in (10) 
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 (11) 

3.2. CWENO-Z3 scheme 

Borges et al. [6] constructed the high resolution WENO-Z scheme as follows 
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. 

Similarly, the smoothness factor are proposed by ref. [14] 
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where 1 1j jIS IS − += − , 4111 == +− jj CC , 21=jC , they called it CWENO-Z3. 

3.3. CWENO-Z3+ scheme 

Acker et al. [7] constructed the WENO-Z3+ scheme as follows  
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where

 

k  is  an undetermined smoothness factor, which is simply proposed k
k

 
 

 

+ 
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+ 
 by 

Acker, where is an empirical constant whose value depends on the size of the grid. Usually 0= , 

then WENO-Z3+ degenerates into WENO-Z3. 

As CWENO scheme is only weighted by global stencils of WENO scheme, we can directly 

introduce idea of WENO-Z3+ scheme into CWENO scheme. Then central WENO-Z3+ scheme 

(CWENO-Z3+) is reconstructed as follows 
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1 1 .j jIS IS − += −
         

                                                      (15) 

We simply select 1=  in this paper. 

3.4. The two-parameter CWENO-NZ3 scheme 

Wu et al. [8] constructed the WENO-NZ3 scheme as follows 
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Then Wu et al. [9, 10] improved the WENO-NP3 scheme to construct the WENO-NN3 scheme 
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here

 
2  

is called a global stencil smoothness factor, its value has a similar structure to the 
n

jIS  in 

CWENO, it's just the coefficients that are different.  

Next, based on the above two CWENO scheme and Taylor's mean value theorem, we construct the 

third-order two-parameter-CWENO-NZ3 scheme as follows 
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where 
4010−= , N  and q  are the parameters which are determined by Taylor's formula, meanwhile 

0q . 

Here, we give the calculation process of the weight function in the third-order two-parameter 

CWENO-NZ3 scheme in detail. Calculate (11) by Taylor series expansion at the non-extreme point of 

continuous solution  
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jjj uuu  、、 represent first-order, second-order and third-order spatial derivatives respectively. 

Substitute (19) into (18-2), 
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we obtain the following weight coefficients  
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                       (23) 

Combining the above process, we realize the following results 

Theorem A For the two-parameter-CWENO-NZ3 scheme, if 0,21 − qqN , then the 

scheme has third-order accuracy. 

Considering the CWENO-NZ3 scheme has two parameters, we always choose 1+= qN . 

4. Numerical results  

4.1 one-dimensional problem
 

No special explanation required, we choose the CFL=0.5 and 4.1=  for two one-dimensional 

problems in the following.
 

4.1.1 Sod shock tube 

Initial conditions[15] 

( )
( )
( )






=

15.0,1.0,0,125.0

5.001,0,1
,,

x

x
pu

 
In this example, the tight support boundary condition is used on both sides of the left and right ends, 

the calculation region is [0,1]. The figures show the density of the solution using three kinds of 

FWENO schemes at t=0.1644, n=400 uniform grids were used. Fig. 1 shows the results of the third-

order scheme using the ACM corrector method proposed by Harten et al. to suppress oscillation. It can 

be clearly seen from the Fig.1 that CWENO-NZ3 has the best computational performance.  
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Figs. 1: Sod problem: density curve and partially enlarged detail at the final time 

4.1.2 Shu-Osher problem 

Initial conditions[2] 

( )
( )

( )( )



−+

−−
=

54,1,0,50.21

450.333331.629369,3.857143,2
,,

xxnsi

x
pu

 
In this example, the tight support boundary condition is used on both sides of the left and right ends, 

the calculation region is [-6,6]. The figures show the density of the solution using three kinds of 

FWENO schemes at t=1.8, n=800 uniform grids were used. Fig. 2.3 shows the results of the third-

order scheme using the ACM corrector method. From Fig. 2.3, it is obvious that the improved 

CWENO-NZ3 scheme has the best computational performance. 

 
Figs. 2: Shu-Osher problem: density curve and partially enlarged detail at the final time 

4.2 two-dimensional problem 

In the following two-dimensional Riemann problems, the CFL number is 0.2 and the adiabatic index 

4.1= . In the Rayleigh-Taylor instability problem, the CFL number is 0.45 and the adiabatic index 

.6671= . For CWENO-NZ3, we always take 1+= ZN .  

4.2.1 Riemann problem 

Initial conditions[16] 

( )

( )
( )
( )
( )











−−

−

−



=

5.0,5.0,10.5,,75.0,3

5.0,5.0,1,0.5,75.0,1

5.0,5.0,10.5,,75.0,1

5.0,5.0,1,0.5,75.0,2

v,,,

yx

yx

yx

yx

pu

 
In this example, the free interface is used in the upper and lower boundaries, the calculation region 

is    1,01,0  . Fig. 3 shows the figures show the density of the solution using three kinds of FWENO 

schemes at t=0.6, nXn =800X800 uniform grids were used. It can be clearly seen from Fig. 3 that the 
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vortex structure of the improved CWENO-NZ3 scheme is the clearest, which shows that the scheme 

has the best computational performance. Compared with CWENO-JS3 and CWENO-Z3, the 

CWENO-NP3 scheme not only has lower dissipation, but also has higher accuracy. 

 
Figs. 3: Riemann problem: 40 density contours at the final time 

4.2.2 Rayleigh-Taylor instability problem 

Initial conditions[2] 

( )
( )( )
( )( )





+−

+−
=

15.0,1.5y,8025.01,0,

5.00,1y2,8025.02,0,
v,,,

xxscop

yxscop
pu






 
In this example, the calculation region is    1,025.0,0  , the left and right boundary conditions are 

reflection boundary conditions, and the top and bottom boundary conditions are respectively, 

( ) ( )5.2,0,0,1v,,, =pu , ( ) ( )1,00,,2v,,, =pu .  Fig. 4 shows the calculation results using the third-

order CWENO scheme, the density of the solution at t=1.95, nXn =480X1920 uniform grids were used, 

the density variation interval is [0.9, 2.2].  It can be seen from the graph that the CWENO scheme with 

different weights has good resolution, can capture the vortex structure well, and maintains fairly good 

symmetry. In particular, there is the largest number of inner vortex and the inner vortex structure of 

mushroom is clearer by using CWENO-NZ3 then by using CWENO-Z3+.  
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Figs. 3: RT instability problem: 14 density contours  at the final time 

5. Conclusions  

In this paper, based on the finite volume method, we improved the third-order CWENO-Z scheme 

from two aspects: 

Firstly, based on the idea of improving the resolution, we introduced the idea of the WENO-Z+ 

scheme that enhancing the role of non-smooth factors into the central WENO scheme. By adding the 

weight of the non-smooth factor, we established the CWENO-Z+ scheme with third-order accuracy. 

Secondly, based on the idea of improving the accuracy, combined the ideas of WENO-NP and 

WENO-JS, by modifying the smoothness factor, we constructed the CWENO-NZ3 scheme.  

In this paper, classical examples such as one-dimensional Sod shock tube, Shock-entropy wave 

interaction, Riemann problem with strong discontinuity and Rayleigh-Taylor instability problem are 

selected to test CWENO-NZ3 scheme for numerical simulation and compared with the classical third-

order WENO scheme. The results show that the two improved central WENO schemes not only 

improve accuracy and resolution at the extreme points, but also reduce dissipation. 
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