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Abstract. A speed trajectory tracking control (STTC) approach is proposed to optimize the 

end-effector trajectory tracking control for free-floating space robot (FFSR) with uncertain 

inertial parameters, where two stages controller are designed by the state dependent Riccati 

equation (SDRE). Firstly, the first-stage SDRE nominal optimization controller is designed by 

using the nominal system model. Next, by analyzing the error transfer process resulting from 

uncertain parameters under the nominal control law, the second-stage SDRE compensated 

controller is designed by the state dependent matrix (SDM) of the system state errors. Then, the 

optimization tracking control for the FFSR with uncertain inertial parameters is achieved by 

combining the first-stage SDRE nominal optimization controller and the second-stage SDRE 

compensated controller. Finally, numerical simulations are given to demonstrate the proposed 

approach which satisfies the precision of the tracking error and the optimization requirement of 

the input torque. 

1. Introduction 

With the development of human space activities, space robots has broad application prospect because 

of their ability to perform tasks in space environments that are too risky for humans. Space robots can 

be divided into two categories according to the base controlled or not, free-floating space robot (FFSR) 

and free-flying space robot. FFSR has the characteristics of the strong coupling, the dynamics of the 

singular, certain model parameters, and etc. FFSR has good orbit ability because it does not need 

additional energy to control the posture of the base, then FFSR has received much more attention in 

space robots field. Many researchers have given much attention on FFSR and obtained many excellent 

results, where the end-effector trajectory tracking control is the important problem to guarantee the 

space robot to accomplish orbit tasks [1-7]. 

For the trajectory tracking control problem of FFSR, Umetani[1] proposed a generalized Jacobian 

matrix to achieve decomposition speed control by constructing the kinematics model of FFSR. 

Papadopoulos[2] constructed the dynamics model of FFSR and proposed the feedback control method 

based on the control torque. However, the control methods of [1] and [2] require a high degree of the 

model and the uncertainty of the system parameters is not considered. 

In order to solve the uncertain parameters problem in the trajectory tracking control, Gu[3] et al. 

proposed an extended manipulator modeling approach and a nominal form extended adaptive control 

approach, but these approaches were very difficult to practical application due to the acceleration of 

the spacecraft in the system model. Because the reference trajectory cannot be achieved in the joint 

space by the dynamic coupling, the extended modeling approach for manipulator was modified in [7] 

by the fixed parameters approach of the nominal controller, but the approach required the acceleration 

of the manipulator joint. 
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The state dependent Riccati equation (SDRE) technique is an effective design method of nonlinear 

feedback controller of nonlinear systems [10], and it has received considerable attention in the past two 

decades [11-13]. SDRE linearizes the nonlinear system by the state dependent coefficient matrix (SDC), 

and derives the feedback control law by solving the algebra Riccati equation (ARE). SDRE has been 

broadly applied in many fields including the satellite attitude control [14], the under-water vehicle [15], 

the tank control [16], and the robotic manipulator [17]. 

In the current paper, based on two stages controller with SDRE, a STTC approach is proposed to 

optimize the end-effector trajectory tracking control for FFSR with uncertain inertial parameters. The 

first-stage SDRE nominal optimization controller is designed according to the nominal system model. 

Considering uncertain parameters under the nominal control law, the second-stage SDRE compensated 

controller is designed by the SDC of the system state errors by analyzing the error transfer process. 

Then, the optimization tracking control for the FFSR with uncertain inertial parameters is achieved by 

the two stages controller. Furthermore, numerical simulations are given to demonstrate the 

effectiveness of the proposed approach. 

2. Infinite-time SDRE tracking controller 

Consider the nonlinear system with affine input as 

 
( ) ( )

( )

x f x g x u

y h x

= +

=
 (1) 

where nx R , mu R , ( ) kf x C , ( ) kg x C  , 1k  , and (0) 0f = , ( ) 0g x x ， . Then, (1) can be 

rewritten as State Dependent Coefficient (SDC) form 

 0( ) ( ) ( ) ( ) ( ), (0)

( ) ( ) ( )

x t A x x t B x u t x x

y t C x x t

= + =

=
 (2) 

where ( ) ( ) ( ), ( ) ( )f x A x x t B x g x= =  and ( ) ( )h x C x x= , and )(),(),( xCxBxA  are SDC matrices. Generally 

speaking, there are not only one group SDC matrices. 

Let ( )ry t  is the expected output trajectory, then the infinite-time trajectory tracking index as 

 
0

1
min ( ) ( )

2
T TJ e Q x e u R x udt



= +  (3) 

where ( ) ( ) ( ) ( )re t y t C x x t= − , )(xQ  and )(xR  are positive definite symmetric matrices. And 

 1( ) ( )[ ( ) ( )]Tu R x B x P x x S x−= − −  (4)
  

  ( )
1

1( ) ( ) ( ) ( ) ( ) ( ) ( )
T

T T
rS x A x B x R B x P x C x Qy t

−
−= − −  (5)

 

where P( x )  satisfies the algebraic Riccati equation 

 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0T T TC x Q x C x P x A x A x P x P x B x R x B x P x−+ + − =  (6) 

3. SDRE based two stages tracking controller 

In this section, the nominal optimization controller is designed according to the nominal dynamic 

model of the space robot. Next, the state errors between the practical system and the nominal system 

can be obtained, and then the state error equation is presented. Then, the compensated controller is 

designed to achieve the trajectory tracking. Figure 1 gives the system schematic of the controller. 



AMIMA 2019

IOP Conf. Series: Materials Science and Engineering 569 (2019) 032028

IOP Publishing

doi:10.1088/1757-899X/569/3/032028

3

 
 
 
 
 
 

FFSR dynamics

Dynamics Model

FFSR dynamics

Dynamics Model

YR

Ŷ
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Figure 1. The system schematic of the controller 

3.1. The kinematics and dynamic model of space robots 

The kinematics and dynamic model of n  degree-of-freedom space robots can be described as 

 
*

( , ) ( , , , )

( , )

b m m b m b m m

b m m

M q q q L q q q q q

y J q q q

+ =

=
 (7) 

where 3 1
bq R   represents the base angles, 1n

mq R 
 
is the manipulator angles, 1nR   represents the 

manipulator torque, n ny R   is the end-effector trajectory, M = ( , ) n n
b mM q q R   represents a 

symmetric definite inertial matrix, ( , , , ) n n
b m b mL q q q q R   is the matrix consists of terms due to the 

centrifugal and Coriolis force, 2M L−  is a anti-symmetric matrix, and * ( , ) n n
b mJ q q R   represents a 

generalized Jacobian matrix. 

When the parameters of the system are uncertain, (7) can be rewritten as 

 
* *

ˆ ˆ( , ) ( , , , ) ( , ) ( , , , )

ˆ ( , ) ( , )

b m m b m b m m b m m b m b m m

b m m b m m

M q q q L q q q q q M q q q L q q q q q

y J q q q J q q q

+ + + =

= +
 (8) 

where  
ˆ( , ) ( , ) ( , )b m b m b mM q q M q q M q q= +  

ˆ( , , , ) ( , , , ) ( , , , )b m b m b m b m b m b mL q q q q L q q q q L q q q q= +  

* * *ˆ( , ) ( , ) ( , )b m b m b mJ q q J q q J q q= +  

and ˆ ( , )b mM q q  represents the nominal inertial matrix, ( , )b mM q q  is the inertial error matrix due to the 

uncertain parameters, ˆ( , , , )b m b mL q q q q  is the matrix consists of terms due to the centrifugal and Coriolis 

force with uncertain parameters, *ˆ ( , )b mJ q q  is the nominal generalized Jacobian matrix, and *( , )b mJ q q  

represents the generalized Jacobian matrix errors due to the uncertain parameters. 

3.2. The SDRE-based end-effector speed trajectory tracking controller 

Let r  represents the output of the nominal controller and d  is the equivalent compensated of the 

control torque of the modeling error due to the uncertain parameters, that is 

( , ) ( , , , )d b m m b m b m mM q q q L q q q q q = +  

ˆ ˆ( , ) ( , , , )r b m m b m b m mM q q q L q q q q q = +  

When the input torque of the FFSR system is r d  = + , the dynamic model with uncertain 

parameters is  
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1 1

* *

ˆ ˆ ˆ( , ) ( , , , ) ( , ) ( )

ˆ ( , ) ( , )

m b m b m b m m b m r d

b m m b m m

q M q q L q q q q q M q q

y J q q q J q q q

 − −= − + +

= +
 (9) 

Let the state variable of the system is mX q=  and the output variable is Y y= , then (9) is 

 
*

( ) ( )( )

( , )

r d

b m

X f x g x

Y J q q X

 = + +

=
 (10) 

where 1 1ˆ ˆ ˆ( ) , ( )f x M LX g x M− −= − = . When 0X = , one has (0) 0, (0) 0f g=  . It is assumed that bq  and 

mq  can be real-time obtained, then 

 
ˆ ˆ( ) ( )( )

( )

r dX A x X B x

Y C x X

 = + +

=
 (11) 

where 1 1ˆ ˆ ˆ ˆ ˆ( ) , ( )A x M L B x M− −= − = , *( )C x J= . 

When 0d = , i.e. there is no uncertain parameter, then the nominal system is 

 
ˆˆ ˆ ˆˆ ˆ( ) ( )

ˆˆ ˆˆ( )

rX A x X B x

Y C x X

= +

=
 (12) 

By (4) and (5), one can see that the control law 

  1 ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( ) ( )T
r r r rR x B x P x X l x −= − −  (13) 

with 

( )
1

1ˆ ˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )
T

T T
r r r r rl x A x B x R B x P x C x Q Y t

−

− = − −
 

 

satisfies  

 1 1
0

1
min ( ) ( )

2
T T

r r r rJ E Q x E R x dt 


= +  (14) 

where 
1

ˆ
rE Y Y= − , ( )rY t  is the expected end-effector speed trajectory, and ˆ( )rP X  satisfies 

 1ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0T T T
r r r r rC x Q x C x P x A x A x P x P x B x R x B x P x−+ + − =  (15) 

Consider that ˆ ( , )b mM q q  is symmetric, one can see that 1ˆ ˆˆ( ) ( , )b mB x M q q−=  is a symmetric and 

definite matrix. Let the weight matrix 

1 2 1 2
ˆ( ) { , }, , 0rQ x diag q q q q= 

 
1 2 1 2

ˆ( ) { , }, , 0rR x diag r r r r=   

Then  
1ˆ ˆˆ ˆ ˆ[ , , ]nrank B AB A B n− =  

1/2 1/2 1/2 1ˆ ˆ[ , , ]n T
r r rrank Q Q A Q A n− =  

and ˆ( )rP x  is only one. 

When 0d  , i.e. the system parameters are uncertain, then  

 ˆ ˆˆ ˆ ˆ ˆ ˆˆ ˆ( ) ( ) [ ( ) ( )] ( )r dX X A x X A x X B x B x B x − = − + − +  (16) 

 ˆ ˆˆ( ) ( )E A x E B x U= +  (17) 
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 ˆ( ) ( )C E X S C x E= −  (18) 

where -1 -1ˆ ˆ( ) ( ) ( ) ( )d rU B x A E X B x B E = + + . Let the expected error output is 

 ˆ ˆ( )erY S C x E= −  (19) 

and  

 ˆ ˆ( )eY C x E= −  (20) 

where the state error is ˆE X X= − , the model error is ˆ ˆ ˆ( ) ( ) ( )A E A x A x= − , ˆ ˆ ˆ( ) ( ) ( )B E B x B x= − , 

ˆ ˆ( ) ( ) ( )C E C x C x= − , and the output error is ˆS Y Y= − . Then, the SDRE control law can be designed as 

  1 ˆ ( )T
d d dU R B x P E l−= − −  (21) 

Satisfies 

 2 2
0

1
min ( ) ( )

2
T TJ S Q x S U R x Udt



= +  (22) 

where 

( )
1

1ˆ ˆˆ ˆˆ( ) ( ) ( ) [ ( ) ]
T

T T
d d d d erl A x B x R B x P C x Q Y

−

− = − − −
  1 2 1 2{ , }, , 0d d d d dQ diag q q q q= 

1 2 1 2{ , }, , 0d d d d dR diag r r r r= 
 

and dP  is a solution of the equation 

1ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) 0T T T
d d d d d dC x Q C x P A x A x P P B x R B x P−+ + − =

 Then, one has 

 -1 -1ˆ ˆ( ) ( ) ( ) ( )d rU B x A E X B x B E = − −  (23) 

3.3. Stability analysis 

It is assumed that the expected end-effector speed trajectory ( )rY t  can be determined by the following 

linear observable system 

 
( ) ( ), (0) 0

( ) ( )r

z t Fz t z

Y t Hz t

= =

=
 (24) 

where { , }F H  is full observable. Let  

X̂
X

z

 
=  
 

，
ˆ ˆ( )A x O

A
O F

 
=  
 

，
ˆ ˆ( )B x

B
O

 
=  
   

ˆ ˆ ˆˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ( )

T T
r r

T T
r r

C x Q C x C x Q H
Q

H Q C x H Q H

 −
=  

−    
Then, by the optimal control theory, the tracking problem (14) can be transfer into the following 

SDRE regulator problem 

 *( ) ( ) rX t A x X B= +  (25) 

 * *

0

1
min ( ) ( )

2
T T

r r rJ X Q x X R x dt 


= +  (26) 

Due to 1ˆ ˆˆ ˆ ˆ[ , , ]nrank B AB A B n− = , one can see that 
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a) If (24) is asymptotically stable,  ( ), ( )A x B x  is stable. 

b) If (24) is not asymptotically stable, it is assumed that the non-asymptotically stable of ( )rY t  is a 

zero input response of (14). In this case, ( )rY t  can be rewritten as 

( ) ( )

ˆ( ) ( )ˆ( )

ˆ ˆ( ) ( ) z ( )

ss s

ns ns

r ns s s

F Oz t z t

z t z tO A x

Y t C x H z t

    
=     

    

= +

 

*
ˆ

ns

s

X z
X

z

 −
=  
 

， *
ˆ( )

s

A x O
A

O F

 
=  
  

 

*
( )B x

B
O

 
=  
   

and (14) can be transfer into a regulator problem. In above equation, the real parts of the eigenvalues 

of sF  all are negative. Then,  * *( ), ( )A x B x  can be point-wise stable. For Q, it satisfies 

1/2 1/2
1/2

ˆ ˆ( )r rQ C x Q H
Q

O O

 −
=  
 

 

Consider that { , }F H  is full observable and  

1/2 1/2 1/2 1ˆ ˆ[ , , ]n T
r r rrank Q Q A Q A n− =  

one can see that, if  ˆ ˆˆ ˆ( ),C( )A x x  is point-wise full observable,  1/2( ), ( )A x Q x  is point-wise full 

observable. From the Theorem 2 of [13], there exists a control law  
* 1 ˆ ˆˆ ˆ ˆ( ) ( ) ( )T
r rR x B x P x X −= −  

such that (25) is closed-loop local asymptotically stable. 

By the optimal control theory, *
r r =  when ( )rY t  is known; that is, the control law is independent 

of ,F H . Then, there exist a control law (13) such that 
1

ˆ, 0rt E Y Y→ = − → . Similarly, there exist a 

control law (21) such that ˆ, 0t S Y Y→ = − → . Due to the FFSR end-effector speed tracking error 

2 rE Y Y= −  and 2 1E E S= − , then there exist the control law r d +  such that , 2 0t E→ → ; that is, 

the stabilized tracking of the practical FFSR end-effector speed trajectory is achieved. 

4. Simulations 

In this section, a space robot manipulator system is analyzed to demonstrate the effectiveness of the 

proposed approach. Figure 2 shows the sketch map of the space robot manipulator system which 

consists of a spacecraft (Sc) and two flexible link arms (A1 represents Arm 1 and A2 represents Arm 

2), where the arms are regarded as flexible bodies and the spacecraft body is considered as rigid body. 

The inertial parameters of the reference model of the space robot manipulator system are given in 

Table 1. 

1r

1l

2l
2r

0r

Spacecraft 
Arm 1

Arm 2

 

Figure 2. The space robot manipulator system 
 

Table 1. The inertial parameters of the nominal model 

Part /il m  /ir m  /im kg  2/ ( )iJ kg m  
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Sc 0.5 0.5 40 6.667 

A1 0.5 0.5 4 0.333 

A2 0.5 0.5 3 0.250 

Consider the fuel consumption when the space robot manipulator system works on the orbit, then 

the inertial parameters of the system are changed and the practical inertial parameters is given as Table 

2. 

Table 2. The practical inertial parameters of the model 

Part /il m  /ir m  /im kg  2/ ( )iJ kg m  

Sc 0.5 0.5 5 0.340 

A1 0.5 0.5 4 0.333 

A2 0.5 0.5 30 2.50 

Let the expected end-effector speed trajectory is  
0.04 sin( ), 0.04 cos( )x t y t = =  

with the weight matrices are 
{210,350}, {210,350}r dQ diag Q diag= = {0.01,0.01}, {0.01,0.01}r dR diag R diag= =

 
The simulation time length is 6.5s and the simulation results are shown from Figure 3 to Figure 5. 

The joint torque is given in Figure 3, Figure 4 shows the tracking trajectory of the end-effector speed 

and Figure 5 presents the tracking errors of the end-effector speed. 

 
Figure 3. The outputs of the joint torque

 

 
Figure 4. The tracking trajectory of the end-effector speed 
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Figure 5. The tracking errors of the end-effector speed 

From the simulation results, the end-effector speed of the space robot manipulator system with 

uncertain parameters is tracked by the proposed STTC approach based on two stages controller with 

SDRE. Meanwhile, the energy consumption of the joint torque is considered in the process of the 

designing controller. Therefore, the outputs of the joint torque are very small and the energy 

optimization can be achieved. 

5. Conclusions 

In this paper, a STTC approach based on two stages controller with SDRE (the first-stage SDRE 

nominal optimization controller and the second-stage SDRE compensated controller) is proposed to 

optimize the end-effector trajectory tracking control for FFSR with uncertain inertial parameters. The 

energy consumption is considered in the process of the end-effector trajectory tracking control. The 

proposed approach is applied to track the end-effector speed trajectory, and then the problem that the 

joint space trajectory is limited due to the coupling can be solved. Moreover, the practical generalized 

Jacobian matrix is not needed to be invertible and it only needs the nominal generalized Jacobian 

matrix is invertible, and then it is easily achieved in practical engineering.  
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