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Abstract. At present, deep learning algorithms such as neural networks are widely used in 

various aspects of artificial intelligence. The computational performance of the CPU is low and 

the power consumption of the GPU is large. Therefore, this paper studies the implementation 

of CNN on the FPGA and proposes an effective storage management scheme, which greatly 

reduces the bandwidth requirement of the operation. The Winograd algorithm is used in the 

operation to reduce the computational complexity of the convolution, so that the performance 

of the FPGA is optimized. This design implements Alexnet on the Virtex7 xc7vx690t with 

1.32 TFlop/s performance and an average Energy efficiency of 43.5 GOP/s/W. 

1. Introduction 

At present, the implementation of deep neural networks is mostly based on general-purpose computers. 

Not only the size of the computer is large, but also the speed of the computer's input and output 

interfaces limits the overall speed, the breadth and depth of the application. As reported in[1], the 

search time can take several days even with hundreds of GPUs. The designer of the deep neural 

network must have a good understanding of the working hardware and software environment of the 

network to apply it to the actual system, which limits the development of deep neural networks.  

Therefore, if the controller can be implemented in the form of FPGA, the hardware size can be 

greatly reduced, and the execution have fast speed and high flexibility[2-5]. Moreover, the deep neural 

network will increase the user's interest due to the small in size and low power consumption of the 

FPGA hardware, especially in terms of learning accuracy, which is not too different due to hardware. 

In addition, due to the reprogrammability of FPGAs, algorithm updates can be easily implemented. 

But these existing design flows dedicated for CNNs are not suitable for such complicated structures 

[6–10, 13]. As for the scheduling on FPGA, a few of works exist in the literature[11,12,13], so the 

design of processor’s architecture and storage management is vital on FPGA. 

2. The basic architecture of processor 

Due to the increasing size of the neural network and the deeper layers and the limit by the storage 

resources on the FPGA, the entire network must be completed by means of an external memory chip. 

Therefore, this design uses a combination of external DDR memory chips and operational FPGAs. The 

entire architecture is shown in figure 1. the architecture of the entire hardware platform consists of an 

operational FPGA chip and a memory chip DDR. The internal FPGA consists of io_control module 

and processing element (PE). 
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Figure 1. The basic architecture of the 

CNN accelerator. 

 Figure 2. The architecture of the io_control 

module 

2.1. Io_control module 

The master control is mainly responsible for managing the input feature map, the weight of the 

network, and the intermediate results generated, and is responsible for data conversion and 

communication between the PE and external DDR. Its structure is shown in figure 2. As can be seen, 

the master control module includes a DDR controller, a data interface, a data parsing/packaging 

module, and a FIFO that stores intermediate results. 

The DDR controller uses communication with the FPGA and the external DDR, which contains an 

IP core running the DDR interface protocol. After satisfying a burst condition, the internal data of the 

FPGA is transferred to the DDR or the data which in the DDR is transmitted to the FPGA. 

2.2.  PE module 

For the most common network at present, the most used is the 3x3 convolution kernel, so the 

architecture design for PE is shown in figure 3 of which the convolution kernel is 3x3. It can be seen 

from the above figure that the PE is mainly composed of the memory array controller, the RAM array, 

and the multiply-add operation matrix. The storage array controller is responsible for the data in the 

RAM array, control of row and column number conversion and manage the RAM array read and write 

operations; RAM matrix stores corresponding eigenvalues and weights; multiply-add operation matrix 

is responsible for calculating the output eigenvalues and weights, then the final result has been 

obtained. The purpose is to adjust the distribution of PE in the whole design according to the structural 

characteristics of different networks, so that the performance is optimal. 
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Figure 3. The architecture of PE 

module. 

 Figure 4. The architecture of compute array 

module 
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2.3. Compute array 

For the 3x3 convolution of stride is 1, we use the Winograd algorithm[14] to speed up the entire 

calculation. The basic principle of the Winograd algorithm is to use addition instead of multiplication 

to reduce the amount of computation. For example, F(2×2, 3×3) use in this design requires 4×4 = 16 

multiplication operations, while the standard algorithm requires 2×2×3×3 = 36 multiplications. The 

Winograd algorithm will make the computational complexity reduce by 36/16 = 2.25 times. 

For F(2 × 2,3 × 3), the output is 

                 Y = 𝐴𝑇[[𝐺𝑔𝐺𝑇]☉[𝐵𝑇𝑑𝐵]]𝐴                                                       (1)                                                       

Among the remaining parameters, g is a 3x3 filter and d is a 4x4 eigenvalue matrix. Each feature 

map is divided into 4x4 sub-feature matrices, and there are two eigenvalue overlaps between two 

adjacent sub-feature matrices. 

For the characteristics of the Winograd algorithm, let U = Gg𝐺𝑇 , V = 𝐵𝑇dB, then the formula 

becomes 

Y = 𝐴𝑇[𝑈☉𝑉]𝐴                                                                    (2) 

This design can convert the convolution kernel and the eigenvalues in advance before the operation 

starts, and then directly perform calculations inside the FPGA, which can reduce a lot of repetitive 

work. The structure of this module is shown in figure 4. As can be seen, the eigenvalues and weight 

values input to the PE are all values that are converted in advance in the software, and then the 

multiplication result is obtained by the dot product module, and then the converter obtains the value of 

the current channel. In the end, the values of the rest channels are accumulated, the final result can be 

obtained. 

3. Storage management 

Implementation of multiple computing resources in hardware is to speed up the inference process of 

CNN, the limitation of storage bandwidth is often the bottleneck of handling CNN[15]. For example, 

for a convolutional layer, a large number of multiply-and-accumulate operations inevitably result in a 

large amount of memory read and write, because each multiply-and-accumulate operation requires at 

least 2 memory read operations and 1 memory write operation. Due to limitations of FPGA internal 

storage resources, most network parameters and intermediate results must be stored on the external 

DDR, so it will seriously affect the throughput and energy consumption, even more than the energy 

consumption of the multiply-accumulate operation itself. 

3.1. Feature and weight value storage 

In response to the limitation of storage bandwidth, this design proposes a scheme that can reduce the 

bandwidth requirement for external storage. For the most widely used 3x3 convolution kernel, the 

following design is implemented. For a nxn feature map, the storage scheme as shown in figure 5. 
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Figure 5. The feature map in 4x4 RAM array.  Figure 6. The feature value update and the 

column number change. 
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As shown in figure 5, the first four rows of the feature map are stored in a 4x4 RAM array before 

the entire operation begins. In the RAM array, each row of RAM only stores feature map which are in 

the same row. This allows you to get the convolved results in one shot without the need for additional 

operations. For the CNN parameters, the same format is also used for storage. Thus, the weight value 

corresponds to the feature value, and the calculation result can be obtained in one shot. 

3.2. RAM array design 

For each group of RAMs, the four RAMs of each row store the feature values of the same row, that is, 

the entire four rows of the feature map need to be stored in the slice separately, and then updated from 

the fifth row and the sixth row. When convolving on the same row, only the column number changes, 

and the row number remains unchanged. Only after the entire column ends, all the values can be 

updated which before the row number changes. 

When the weight value which stored in the RAM array runs to the last one, the feature map is 

updated. Before this, the entire graph of the feature map is transferred to the on-chip FIFO for storage 

in the form of DMA burst, and then The FIFO extracts a feature value at a time to update the feature 

values in the RAM array. The specific process is shown in figure 6. It can be seen that after updating 

the feature value, the column number in the RAM array change, and the read pointer in the updated 

RAM is incremented by one which can facilitate the operation of the RAM array. For the interface, 

you only need to operate the RAM with the column number 0, 1, 2, 3 at a time, you can read the 

corresponding operand. 

Each of the row and column numbers in the RAM array has a corresponding actual operation, and 

the corresponding specific values are shown in the following table1. 

Table 1. The row and column numbers and the operation number. 

Row/Column Number of RAM Array Operation Number（Binary） 

0 00011011 

1 01101100 

2 10110001 

3 11000110 

 

As can be seen from the operation number shown in table1. The row/column number is converted 

from 0, 1, 2, 3 to 2, 3, 1, 0 when the RAM update.  We just ring shift 4bit left of the actual operation 

number which can achieve the corresponding conversion. 
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Figure 7. The control flow of storage management. 

3.3. Storage management design 

The design process of the storage management module is shown in figure 7. It can be seen that in the 

present design, a weight value is fixed after the operation starts, and then the feature map is traversed. 

In this way, the output of the part belongs to the same feature map, which is convenient for storing to 

DDR. When the RAM array of the current storage weight runs to the last value, updating the RAM 

array storing the feature map can ensure uninterrupted flow and can maximize the parallelization of 

the design. 

4. Result analysis 

This design is implemented on the Xilinx Virtex7 xc7vx690t platform. In this design, we use a 

pipeline structure, each layer is designed separately, and then unified control which can greatly 

improve the speed. In the design of the pipeline, the calculation amount of each layer should be kept 

substantially equal. Otherwise, the bottleneck of the pipeline will be generated which can reducing the 

efficiency of the entire pipeline. 

This design takes Alexnet as an example to implement the proposed algorithm and compare it with 

other FPGA implementations. The results are shown in table 2. 

Table 2. The performance comparison of Alexnet on different platforms. 
Work Wei et 

al.[16] 

Avdonat et 

al.[17] 

Liqiang Liu 

et al.[18] 

Xushen Han 

et al.[19] 

Our 

Implementation 

FPGA platform AWSF1 GX1150 ZCU102 Virtex 

xc7v2000 

Virtex7 

xc7vx690t 

Precision 32bit 

float 

32bit float 16bit fixed 32bit float 16bit float 

Frequence (MHz) 230 303 200 189 170 

Performance 

(TFlop/s) 

1.88 1.38 1.28 1.24 1.35 

Energy efficiency 

(GOP/s/W) 

27.5 40.2 36.2 38.1 43.2 



AMIMA 2019

IOP Conf. Series: Materials Science and Engineering 569 (2019) 032013

IOP Publishing

doi:10.1088/1757-899X/569/3/032013

6

 
 
 
 
 
 

It can be seen from table 2 that the storage management and operation framework proposed by the 

scheme can achieve relatively high performance, and the energy efficiency of the design is the highest 

among the five design schemes listed in this table. 

Table 3. The performance comparison between out implementation and GPU. 

Device TitanX Virtex7 xc7vx690t 

Precision 32bit float 16bit float 

Performance(Tflop/s) 4.17 1.35 

Energy efficiency (GOP/s/W) 16.9 43.2 

We also compare the experimental results of the FPGA platform with the implementation results of 

the GPU. We use NVIDIA TitanX GPUs to implement Alexnet under the Caffe framework[20]. In the 

implementation of the GPU, the design is accelerated by the Winograd algorithm, and the results are 

shown in table 3. It can be seen that although the performance of the GPU is higher than our design 

when implement the same network, the energy consumption performance of the design is 2.5 times 

that of the GPU. 

5. Conclusion 

This paper studies the FPGA hardware platform based on CNN, which designs an efficient hardware 

platform architecture and proposes a storage management scheme that can effectively reduce the 

storage bandwidth. On this basis, the Winograd algorithm is used to reduce the amount of computation, 

and the processing modules of the convolution kernels of 3x3 is designed, so that the hardware 

platform can accelerate CNN more efficiently. This design implements Alexnet on the Virtex7 

xc7vx690t with a performance of 1.35TFlop/s and the average energy efficiency of 43.2 GOP/s/W. 

The result is better than several of current popular centralized design. 
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