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Abstract. In this paper, Monte Carlo method combined with the random critical-core 

probability model is proposed to calculate the longitudinal tensile strength of unidirectional 

composites. This method considers two-dimensional distribution of fibers on the cross-section, 

while the theoretical analysis method only takes the linear distribution of fibers into account. 

Using the weakest link principle, the failure probability and average strength of the 

unidirectional composites are obtained. The results show that the calculated values of 

longitudinal tensile strength of T300/5208 composite and unidirectional C/C composites agree 

well with the experimental results. 

1. Introduction 

The traditional strength theory often encounters great difficulties when solving the problems of 

strength and fracture of composites which are always a key issue in the study of composites. The 

discreteness of fiber strength determines that the failure of composites is a random process and a 

stochastic process of fiber breakage, interfacial debonding and matrix cracking. To deal with those 

problems, the statistical theory of meso-mechanics should be used. 

Daniels[1] proposed the theory of fiber bundle statistical strength. Gucer and Gurland[2] developed 

Daniels' theory and studied the tensile strength of unidirectional composites via using a chain-of-

bundles model firstly. Rosen[3] regarded unidirectional composites as chains of bundles, each of 

which is called a link or a   layer. If the fibers and the matrix break in the same layer, the link will be 

destroyed and as long as one link in the chain breaks, it means the failure of the composite. This is the 

famous Gucer-Guland-Rosen chain model. However, their theories use the average load sharing rule, 

ignoring the concentration effect of the stress, which is not consistent with the actual situation. 

Zweben et al.[4-5] proposed a statistical theory of crack propagation based on experimental 

observations. In their analysis, the local load sharing rule was adopted. Argon[6] also developed a 

similar theory, which proposed the conditions of crack instability propagation and the method of 

calculating the stress concentration factor as well as established the failure criterion of composite 

materials. Smith et al.[7] and Batdorf[8-9] also proposed a similar theory. The above various crack 

propagation statistical theories are based on the chain-of-bundles model, which limits the crack 

propagation to a short layer and is inconsistent with the actual situation. 

This paper considers that the ineffective length increases with crack propagation. Monte Carlo 

method is used to calculate the probability of initial crack cluster containing one broken fiber 

propagating unsteadily at any stress level. Then combined with the weakest link theory, the average 

tensile strength of the composite can be obtained. 
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2. Statistical theory of crack propagation 

When the composite is loaded in the fiber direction, the weakest fiber will fail firstly, thus causing the 

failed fiber to lose its load carrying capacity within a certain length near the breaking point. The failed 

fiber’s load will be transferred to the nearby fibers,which leads to the formation of a fiber break cluster, 

further increasing the stress concentration until a crack cluster becomes sufficiently large. The crack 

cluster begins to propagate unsteadily and the overall failure of composites happens. According to this 

view, the fiber strength distribution and the stress concentration around the broken fiber are two key 

factors determining the longitudinal tensile strength. 

Coleman[10] pointed out that the Weibull distribution could be used to describe the strength of 

carbon fiber. The cumulative probability distribution is as follows 

 

m

f
f

0 0

( , ) 1 exp
L

F L
L






  
 = − −  
   

  (1) 

where f( , )F L is the failure probability when stress f  is applied to the fiber of the length L ; 0L  is 

the characteristic length; 0  is the characteristic strength corresponding to the characteristic length; m 

is the Weibull modulus. 

The Gucer-Guland-Rosen chains model considers unidirectional composites as a collection of M 

chains. Each chain is composed of N fibers, called a   layer. The model is shown in Figure 1a and   

is called the ineffective length. The crack propagation statistical model considers that when a certain 

fiber breaks in a layer, the fibers adjacent to the fracture might break due to stress concentration. After 

that, the fracture mode will continue to happen. Zweben assumes that when the number of broken 

fibers in one layer reaches R, the crack cluster will be propagated unsteadily. Both the whole layer and 

the composite material will fail. R, called the critical crack cluster size, is a positive integer that needs 

to be determined by the nature of the composite. 

The weaker fiber is broken firstly, and the adjacent fiber might undergo successive fracture because 

of stress concentration. If the adjacent fibers’ fracture location is within the range of the ineffective 

length, it is considered that the original crack cluster has propagated. If it is outside the ineffective 

length, it is not related to the original crack cluster. In this paper, as the crack cluster propagates, the 

ineffective length increases gradually. The crack cluster propagates in both the longitudinal and 

transverse directions, as shown in Figure 1b. Until a critical dimension, the composite fails. 

There are MN elements in the composites represented by the chains model. It’s assumed that the 

initial fracture fibers are far enough apart, ignoring the possibility that they can combine to form a 

crack cluster. The initial fracture fiber does not affect each other during the propagation of the crack 

cluster. The expected number of the initial cracks is as follows 

 f 0 f 0

0

( , ) ( , )
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= =   (2) 

where LN  is the total length of the fibers in the composite.  

The probability of composites failure can be expressed as 

Figure 1 crack propagation mode 
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where n f( )P   is the probability of a single initial crack propagation to critical crack cluster. In general, 

the fiber stress f u  corresponding to c f( )P  that
 
equals 0.5 [3]6] is taken as the average fiber stress. 

The tensile strength of the composites can be obtained by using the following formula 

 cu f fuV =   (4) 

fV  is the volume fraction of fibers. When f( )nP   is known, the above equation can be solved. The 

Monte Carlo method will be used to obtain 
f( )nP  . 

3. Monte Carlo simulation of crack propagation 

The Monte Carlo method can overcome the difficulty of theoretical analysis and obtain the probability 

distribution of crack cluster instability propagation. At present, this simulation is limited to the 

unidirectional composites, which can not only theoretically predict the damage and damage process, 

but also study the size effect of the specimens. The effects of material properties such as fiber, matrix 

and interfacial strength on the strength can also be discussed and analyzed. 

3.1. Ineffecitive length and stress concentration factor 

The ineffective length is defined as twice as the distance fibers stress recovering to a certain 

percentage   of far-field stress, as shown in Figure 2. The Kelly-Tyson shear-lag model[11] can offer 

an approximate solution of the ineffective length. The expression is as follows 
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where d is the fiber diameter and 
i  is the interfacial shear strength. 

The cross-section of the crack cluster is approximately circular. When calculating the ineffective 

length of the crack cluster, the crack cluster containing i broken fibers is equivalent to a thick fiber 

whose section area is equal to the sum of i broken fibers. Its diameter is id . The ineffective length of the 

equivalent fiber can be approximated as 
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when i is equal to 1 and 
1 0 = . It is assumed that the broken fibers’ load will be evenly distributed in 

the fiber adjacent to the crack cluster, and the stress concentration factor is 

 1
r

K
c

= +   (7) 

where r is the number of broken fibers in a crack cluster and c is the number of fibers adjacent to the 

crack cluster. 
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Figure 2 schematic view of ineffective length  
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3.2. Monte Carlo simulation process 

The stress 
f  applied to fibers is selected and the corresponding initial ineffective length 

1  is 

calculated. Random numbers are generated by the following formula and assigned to the fiber as the 

strength of the fibers. R is a random number between 0 and 1. One of the fiber’s strength is set to zero 

as the initial crack source. 

 

1

0

0

1

ln(1 ) m

i

R L
 



 −
= − 

 
  (8) 

If the fiber fails, the stress concentration factor and the crack cluster’s ineffective length are 

updated. The strength of the fiber adjacent to crack cluster will decrease due to the increase of the 

ineffective length. The fibers’ strength is updated by using following formula. 
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Until the crack cluster stops propagating or all the fibers fail, the simulation ends. When P times 

are simulated, the times that all the fibers fail is Q. The probability of the crack cluster propagating 

unsteadily at the stress 
f is 

 
n f( )

Q
P

P
 =   (10) 

Some different stress levels are selected to get a complete probability distribution. 

How to select the number of simulated fibers is also an important issue since the number can not be 

too much or too little. The critical size of crack cluster is much smaller than the total number of cross-

section fibers. In literature[12], the failure probability of any fiber around the crack cluster is greater 

than or equals 11 e−−  as the criterion of propagating unsteadily. As shown in Figure 3, if Z equals 10 

and the simulated fibers is 100, the instability propagation criterion can be satisfied generally, 

otherwise the number of fibers will be increased. 

4. Examples 

4.1. T300/5280 Composite 

The material parameters are from the literature[13]. The fiber volume fraction 
fV  is 70%, the carbon 

fiber diameter d is 7μm, the longitudinal elastic modulus 
fE  is 230Gpa. The strength of the filament 

obeys Weibull distribution, L0 is 25mm, the corresponding characteristic strength 
0  is 2.98GPa, 

Weibull modulus m is 7.68; epoxy matrix elastic modulus Em is 3.45Gpa, interfacial shear strength τi 

Z fibers 

Z fibers 

initial broken fiber 

Figure 3 fibers arrangement during Monte Carlo simulation 
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is 25Mpa. The cumulative probability distribution of crack cluster propagating unsteadily is shown in 

Figure 4, where  the dimensionless stress is the stress. 

Literature[13] renders the experimental result of longitudinal tensile strength equalling to 1.5GPa, 

but the size of the specimen is not given. It is estimated from the test standard that the volume of the 

specimen is about 8.20×10-7m3~4.10×10-6m3. If the volume is 2.0×10-6m3, the fiber length is 36378m, 

which is selected to calculate. 

Solving the formula(6), the result that 
f  equals to 2.15GPa could be obtained. Using formula(6), 

the tensile strength equal to 1.51GPa can be gained. The experimental value is 1.5GPa and the error is 

0.67%. 

4.2. Unidirectional C/C Composites 

The material parameters are from the literature[14]: fiber volume fraction 
fV  is 33.1%, carbon fiber 

diameter d is 7um, longitudinal elastic modulus 
fE  is 235GPa. The strength of fiber filament 

approximately obeys double Weibull distribution, characteristic length is 20mm, corresponding 

characteristic strength 
01  is 1.79GPa, 

02  is 2.67GPa, Weibull modulus 
1m  is 6.7, 

2m  is 3.1, the 

interfacial shear strength is 8.1MPa. The size of the specimen is 25mm4mm3mm, the total length of 

fibers is 2580m. The probability cumulative function of fibers’ strength is expressed by formula(11). 

The cumulative probability distribution of crack cluster propagating unsteadily is shown in Figure 5. 
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Figure 4 probability distribution of failure crack cluster of T300/5208 composite 
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Using the method proposed in this paper, we obtained that the fiber stress 
fu  is 1093.5MPa. Then 

by formula(6), the results that the strength of the composite is 362 MPa, experimental value is 

352.4MPa and the errors is 2.7% are acquired. 

5. Conclusions 

The fracture process of composites is affected by various factors, which leads to different physical 

processes. In addition to the properties of fibers and matrix, the micro-fracture mechanism is mainly 

influenced by the interfacial bonding strength. The proposed model can describe the random failure 

process of unidirectional composites well, and the cracks can propagate randomly in both longitudinal 

and transverse directions in this model. Therefore, the model can overcome the shortcoming that the 

chain model only considers the transverse propagation of cracks. The calculation results are in good 

agreement with the experimental data, which confirms the rationality and correctness of the statistical 

damage theory established in this paper. The method of calculating the tensile strength proposed in 

this paper can be further developed, for example, the fusion and influence between different crack 

cluster can be considered. 
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