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Abstract. Companies that want to market their products to the outer islands need a large-

capacity transportation mode that can distribute the product to every place. Other important 

consideration is the cost of the company must be efficient. The most commonly used by 

transportation logistics company is the mode of sea transportation. This paper presents an 

optimization model for determining vessel travel routes by meeting demand and paying 

attention to inventory levels at each ports so that the company's costs are minimum. The 

problem is known as the maritime inventory routing problem (MIRP) and the delivered product 

can be just one type (single product) or it can be multiproduct. MIRP models are formulated 

using integer linear programming and numerically solved by the aid of MiniZinc IDE 2.1.5. 

 

 

 

1. Introduction 
It is forecasted that world seaborne trade to increase by 2.8 per cent in 2017, with total volumes reaching 

10.6 billion tons [1]. It is also projected that expansion continues with volumes growing at an estimated 
compound annual growth rate of 3.2 per cent between 2017 and 2022. Cargo flows are expected to 

expand across all segments, with containerized and major dry bulk commodities trades recording the 

fastest growth. These facts suggest an effective maritime transportation of utmost importance. 

In maritime transportation, huge quantities of products are usually loaded and unloaded at 

production and consumption ports. In this situation, the loading process, inventory and 

transportation are time consuming and costly [2]. Thus, the routing and scheduling of the ships as 

well as the inventory management should be planned simultaneously. The resulting problem is 

called a maritime inventory routing problem (MIRP) [3, 4]. Optimization in maritime inventory 

routing is a well-established field of research in transportation planning with growing amount of 
research in the literature in various applications during the last decade [5]. 

This paper extends the work of Song and Furman (2013) into a multiproduct MIRP, where the 

model is proposed and formulated in a mixed integer programming. An optimization model for 

determining ships travel routes by meeting demand and paying attention to inventory levels at each 

place so that the company's costs are minimum is considered. 

2. Related literature 
Some researchers have explored the issue of MIRP, which examined the distribution of a single product  

on  several  production  ports  with  a  constant  production rate and limited storage capacity taking into 

account travel time, the model was solved by column generation techniques [6]. Christiansen examined 
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the problem of maritime inventory routing about the combination of inventory problems and the 

determination of ship routes with time constraints, and the model was solved using the Dantzig-Wolfe 

decomposition approach [7]. Christiansen and Fagerholt describe the usual MIRP as the transportation 

of one product produced in a production port and sent to a consumption port [5]. Al-Khayal and Hwang  

also explain the varied aspects of maritime transportation which formulate the problem of nonlinear 
programs into linear problems with special structures that minimize ship travel costs in loading and 

delivering large quantities of liquid / liquid products [8]. 

 
3. Problem description 
Suppose there are several production ports ��

that will produce products sent to the port of consumption 

��  in a certain period �. Each port has an initial inventory of products and has a minimum and maximum 
inventory limit. Travel time between ports is assumed in a day. Ships available to deliver products have 

different capacities and cost. A journey begins when the ship is empty and ends when it is empty again. 

Based on the depth level of the seawater in the port, the ships that come and go have product draft limits. 
Settlement of distribution and inventory problems requires costs which consist of the cost of renting a 

vessel, overloading which exceeds the minimum part cargo vessel as well as the cost of travel to the 

destination port and demurrage costs then subtracting the netback multiplied by the number of delivered 
products. The purpose of this problem is to find the optimal route with the minimum cost of the ship trip 

by taking into account certain capacities, constraints and limitations. Examples of illustrated ship trips 

can be seen in figure 1.  

 
 

 

 

 

 

 

 

 
 

 

 
 

 

 

 

     MIRP problems can be described by a time-space network, which consists of a set of nodes and an 

arc set. Nodes represent possible inter-port trips that can be written as (�, �) with � declaring a port and 

� declaring a specified time. The node (�, �)states the ship's visit to port � at time �. The node set is 

divided by each ship and each ship has its own set of arc. The set of nodes consists of the origin node 

(0,0), sink node or end node (0, T + 1), and the set of regular nodes, namely nodes other than the original 

node and end node. Arc states the possibility of a trip by a ship that can be written as 

(�, (�, �), (	, � + 1)with � denotes the ship and � is the initial port at time � and 	 is the destination port 

that reaches the time � + 1 (Song and Furman, 2013) [4]. 

 

This problem is definedas follows. Given: 

� a discrete model with units of time in days, 

� horizon / planning period along T, 

� the number of products / goods produced or consumed per day on each port is known, 

Figure 1. Ilustration of a ship trip 
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� single shipped products for each port, 

� each port has a product limit at the time of entry or exit port and has a minimum limit and 

maximum product inventory for each time, 

� only one ship can load or discharge in one day, 

� total vessel visits for loading or discharging to all ports are limited, 

� travel time between ports is only one day. 
 

This paper modifies the model by Song and Furman (2013) [4]. They study the optimal schedule for 

routing a heterogeneous vessels to sent a single bulk product while maintaining all capacities and 

inventory levels at each ports. This paper developed a multiproduct MIRP problem which involves two 

types of products. 

 

4. Model 
 

4.1 Notation 
 

The following sets, parameters, and variables are used throughout the paper. 

Sets  
V set of all vessels with index v where 
 = 
� ∪ 
\
�  


� set of vessels that hired 


\
�  set of vessel that unhired 

� set of all ports wit index �where � = �� ∪ ��  

��  set of production port  

��  set of consumption port 


 set of all node with index � 


�  set of regular node 

� set of all arc with index � where ⋃ ��� ∈�  

��  set of arcs belonging to vessel � 

��(n) set of arcs that have node � as their tail node 

��(n) set of arcs that have node � as their head node 

� set types of product sent with index � 

  

Parameters  

��(�,�,�) the initial amount of product type � inventory level at production port 

��(�,�,�)!"#  minimum amount of product type � in production port at time � 

��(�,�,�)!$%  maximum amount of product type � in production port at time � 

�&(�,�,�) the initial amount of product type � inventory level at consumption port 

�&(',�,�)!"#  minimum amount of product type � in comsumption port at time � 

�&(',�,�)!$%  maximum amount of product type � in consumption port at time � 

��� part cargo minimum for type � in vessel v 

*� world scale multiplier for vessel v 

-�. overage multiplier scale for vessel v 

/�����2  draft limits which restrict the cargo capacity when entering production port 

/�����3  draft limits which restrict the cargo capacity when exiting production port 

/&��'�2  draft limits which restrict the cargo capacity when entering consumption port 

/&��'�3  draft limits which restrict the cargo capacity when exiting consumption port 

4�'  cost rate for traveling from port � to port 	 

&�� capacity in vessel � for product type � 

4$  the cost for using arc � 
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5(�,�,�) the number of products � produced by the production port � from time � − 1 to time � 

6(�,',�) the number of products � consumed by the consumption port 	 from time � − 1 to time � 

75��!"# minimum number of product type � that loaded on production port 

75��!$%  maximum number of product type � that loaded on production port 

74�'!"#  minimum number of product type � that discharged on consumption port 

74�'!$%  maximum number of product type � that discharged on consumption port 

8�  maximum times to loads product 

8'  maximum times to discharge product 

9 netback of each unit of product delivered by the ship. 

  

Binary Variables  

:$ 1 if vessel � use arc �, 0 otherwise 

;����  1 if vessel � load product �, 0 otherwise 

<��'�  1 if vessel � discharge product �, 0 otherwise 

  

Continuous Variabel  

75����  number of product loaded  

74��'�  number of product discharged 

��(�,�,�) inventory levels in production port 

�&(�,',�) inventory levels in consumption port 

�
��� number of product in vessel � 

>��$ overage products in vessel � 

 

4.2 Model formulation 
 
The objective function of this problem is to minimize distribution costs which consist of ship usage costs 

and ship travel cost for overage product then reduced by netback for one ton of products delivered: 

 

min ? 4$:$ + ? ? ? *�-�.4�'>��$
� ∊ A$ ∊ B� ∊ �$ ∊ B

− ? ? ? ? 974��'�
� ∊ A� ∊ {C,D,… ,E}' ∊FG� ∊ �

. 

 

The constraints below describe a time-space network based formulation with flow conservation 

constraint: 

 
? :$ − ? :$ = 0 ,

$ ∊BI ; $ ∊KL(#) $ ∊BI ; $ ∊KM(#)
         ∀� ∈ 
, ∀� ∈ 
�, 

 

? :$ = 1
 $ ∊BI ; $ ∊KM(�,�)

, ∀� ∈ 
, 
 

? :$ = 1
 $ ∊BI ; $ ∊KM(� ,E�C)

, ∀� ∈ 
. 

 

The nest set of constraints explain about inventory balance at each ports, namely production ports and 

consumption ports: 

 

��(�,�,��C) − ? 75���� + 5(�,�,�) = ��(�,�,�)
� ∊ �

,   ∀� ∈ ��, ∀� ∊ �, ∀� ∈ {1,2, … , �}, 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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�&(�,',��C) + ? 74��'� − 6(�,',�) =  �&(�,',�)
� ∊ �

,   ∀	 ∈ ��, ∀� ∊ �, ∀� ∈ {1,2, … , �}. 

 

The next constraint is about inventory balance for products on the vessels are represented by the 

following expression: 

�
��(��C) + ? 75���� − ? 74��'�
'∊FP

=  �
���
�∊FQ

,    ∀� ∈ 
, ∀� ∊ �, ∀� ∈ {1,2, … , �}. 

 

The following set of constraints to ensure that a loading or discharging products by a vessel can occur 

only when the vessel is at that port.  

;���� ≤ ? :$
 $ ∊KL(#)

 ,                 ∀� = (�, �) ∈ 
�, ∀� ∈ ��, ∀� ∈ 
, ∀� ∊ �, ∀� ∈ ��, 
 

<��'� ≤ ? :$
 $ ∊KL(#)

 ,                ∀� = (	, �) ∈ 
�, ∀	 ∈ ��, ∀� ∈ 
, ∀� ∊ �, ∀� ∈ ��. 

 

If the process of loading or discharging products is happen then the loading amount or the discharging 

amount has to be in between the port specific minimum and maximum amounts: 

75��!"#;���� ≤ 75���� ≤ 75��!$%;����,         ∀� ∊ 
, ∀� ∊ �, ∀� ∈ ��, ∀� ∈ {1,2, … , �}, 
 

74�'!"#<��'� ≤ 74��'� ≤ 74�'!$%<��'� , ∀� ∊ 
, ∀� ∊ �, ∀	 ∈ ��, ∀� ∈ {1,2, … , �}. 
 

In many other practical cases, berthing rules specify that only one vessel can stop for loading or 
discharging products at a port. If you want to change the numbers of vessels desired to carry out product 

for load or discharge more than one, then the right side of the constraints below can be adjusted 

appropriately: 

? ;���� ≤ 1,
� ∊ �

           ∀� ∊ � , ∀� ∈ �� , ∀� ∈ {1,2, … , �}, 
 

? <��'� ≤ 1,
� ∊ �

            ∀� ∊ � , ∀	 ∈ �� , ∀� ∈ {1,2, … , �}.  
 

The next set of constraints is to uphold the assumption that total vessel visits for loading or discharging 

products are limited for the entire time the planning, we defined the limit total visits vessel by 8�: 

 

? ;���� ≤  8�,
� ∊ {C,D,… ,E}

                  ∀� ∈ 
,   ∀� ∊ �,   ∀� ∈ ��,   
 

? <��'� ≤  8',
� ∊ {C,D,… ,E}

                  ∀� ∈ 
,   ∀� ∊ �,   ∀	 ∈ ��. 

 

 

The next set of constraints is to enforce the number of products on the vessel that will load in the 

production port or discharge in the consumption port so that when vessel enters or exits the port, it 

cannot exceed the specified limit due to water depth, but if the vessel does not load or discharge then 

the number of products only needs to below the vessel’s capacity: 
 
�
��(��C) ≤ /�����2 + (&��–/�����2 )(1 – ;����),  ∀� ∊ 
, ∀� ∊ �, ∀� ∊ ��, ∀� ∊ {1,2, … , �}, 
 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(15) 

(16) 

(17) 

(14) 
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�
��� ≤ /�����3 + (&��–/�����3 )(1 – ;����),        ∀� ∊ 
, ∀� ∊ �, ∀� ∊ ��, � ∊ {1,2, … , �}, 
 

�
����C ≤ /&��'�2 + (&��–/&��'�2 )(1 – <��'�),     ∀� ∊ 
, ∀� ∊ �, ∀	 ∊ ��, ∀� ∊ {1,2, … , �}, 
 

�
��� ≤ /&��'�3 + (&��–/&��'�3 )(1–<��'�),          ∀� ∊ 
, ∀� ∊ �, ∀	 ∊ ��, ∀� ∊ {1,2, … , �}. 
 
The next constraint is for the overage number of products on a vessel when it exceeds the minimum part 

cargo of the vessel: 

 
>��$ ≥   (�
��� − ���)–(&��–���)(1–:$),∀� ∊ 
, ∀� ∊ �� . 
 
The following set of constraints are for the inventory level of products in the production portsor the 

consumption ports must be in between the minimum limit and the maximum limit for the product at 

each ports: 

 

��(�,�,�)!"#  ≤   ��(�,�,�) ≤ ��(�,�,�)!$% ,     ∀� ∊ �, ∀� ∊ �T, ∀� ∊ {1,2, … , �}, 
 

�&(',�,�)!"#  ≤   �&(�,',�) ≤ �&(',�,�)!$% , ∀� ∊ �, ∀	 ∊ ��, ∀� ∊ {1,2, … , �}. 
 

The next constraint is for ensure the number of products on a vessel does not exceed the capacity on the 

vessel: 
 
0 ≤   �
��� ≤ &��, ∀� ∊ 
, ∀� ∊ �, ∀� ∊ {1,2, … , �}. 
 

the next is for the limitation of products over the ship when it exceeds the minimum part cargo of the 

vessel: 
 

0 ≤   >��$ ≤ &��–���,∀� ∊ 
, ∀� ∊ �, ∀� ∊ ��. 
 

The final set of constraints are for non-negativity and for binary constraints: 

 
75���� ≥ 0,  74��'� ≥ 0, ∀� ∊ 
, ∀� ∊ �, ∀� ∊ ��, ∀	 ∊ ��, ∀� ∊ {1,2, … , �}, 

 
:$ ∊ {0,1}, ;���� ∊ {0,1}  ,  <��'� ∊ {0,1}, ∀� ∊ 
, ∀� ∊ �, ∀� ∊ ��, ∀	 ∊ ��, ∀� ∊ ��, ∀� ∊ {1,2, … , �}. 
 

 
5. Results and discussion  
The optimization problem raised in this paper is solved numerically by MiniZinc, a programming 

language designed for optimization of problems with the decision variable in the form of real numbers. 

MiniZinc is designed with multiple solvers to produce optimal solutions by inputting the MiniZinc 

model and data files in the FlatZinc model. FlatZinc model consists of variable declarations and 
definitions of constraints and objective functions. Solvers contained in MiniZinc include Gecode 

(bundled), Gecode (Gist, bundled), Chuffed (bundled), COIN-OR CBC (bundled), Gurobi (bundled), 

G12 fd, G12 lazyfd, G12 MIP. MiniZinc can solve problems that are constrained easily because this 
software supports sets and arrays as well as types of decision variables that are diverse, namely integer, 

boolean, set of integer. In addition, the advantages of this software are that there are declarations of 

many global constraints like alldifferent, cumulative, regular tables, etc. which can be used to make the 
model easier. MiniZinc can also be used for different types of problems, namely satisfaction and 

optimization problems [9]. 

For an illustrative example, it is considered a simple routing problem of 4 ships connecting 5 

production ports and 3 consumption ports and delivering 2 products namely Oil-1 and Oil-2 within 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 
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5 days of planning period. A number of parameters are utilized, such as the level of production and 

consumption in each port, including their initial levels and lower/upper bounds of inventory level, 

carrying capacity of ship, transportation and demurrage costs that can be seen in table 1-5. The 
problem was numerically solved by using software MiniZinc IDE 2.1.5 with solver COIN-OR CBC 

(bundled) under Windows 10 Pro operating system, processor intel/(R) core/(TM) i3-4150, CPU 

3.50 GHz, RAM 4.00 GB which require 35 hours 11 minutes 43 seconds. 

 

Table 1. Parameter values for each vessels 

Notation Vessel 1 Vessel 2 Vessel 3 Vessel 4 

��  2 3 4 5 

&� 10 20 30 40 

4$ 50 100 100 150 

  
Table 2. Travel and demurrage cost 

Port A B C D E F  G H 

 A 3 3 4 6 4 8 7 3 

 B 3 4 3 3 7 3 4 3 

C 4 3 2 5 2 2 3 4 

 D 6 3 5 3 5 2 3 7 

 E 4 7 2 5 1 3 2 3 

 F 8 3 2 2 3 2 5 5 

 G 7 4 3 3 2 5 4 3 

 H 3 3 4 7 3 5 3 2 

 

 
Table 3. Parameter values for each production ports 

Notation 
Port A Port B Port C Port D Port E 

Oil-1 Oil-2 Oil-1 Oil-2 Oil-1 Oil-2 Oil-1 Oil-2 Oil-1 Oil-2 

��(�,�) 2 2 3 3 4 4 3 3 5 5 

��(�,�,�)!"#  1 1 1 1 1 1 1 1 1 1 

��(�,�,�)!$%  100 100 100 100 100 100 100 100 100 100 

75�!"# 2 2 3 3 2 2 3 3 2 2 

75�!$% 15 15 10 10 12 12 14 14 13 13 

/����2  10 10 15 15 12 12 20 20 17 17 

/����3  15 15 16 16 18 18 19 19 20 20 

8� 10 10 10 10 10 10 10 10 10 10 
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Table 4. Parameter values for each comsumption ports 

Notation 
Port F Port G Port H 

Oil-1 Oil-2 Oil-1 Oil-2 Oil-1 Oil-2 

�&(�,�) 10 10 11 11 9 9 

�&(',�,�)!"#  1 1 1 1 1 1 

�&(',�,�)!$%  100 100 100 100 100 100 

74'!"# 0 0 0 0 0 0 

74'!$% 30 30 30 30 30 30 

/&�'�2  20 20 20 20 20 20 

/&�'�3  20 20 20 20 20 20 

8' 10 10 10 10 10 10 
  

Table 5. Production and consumption level 

Port j t = 1 t = 2 t = 3 t = 4 t = 5 
Oil-1 Oil-2 Oil-1 Oil-2 Oil-1 Oil-2 Oil-1 Oil-2 Oil-1 Oil-2 

A 10 10 15 15 15 15 12 12 11 11 

B 12 12 12 12 11 11 12 12 14 14 

C 11 11 14 14 12 12 12 12 3 3 

D 11 11 13 13 14 14 12 12 15 15 

E 11 11 12 12 11 11 11 11 11 11 

F 3 3 5 2 3 5 1 4 3 2 

G 4 3 2 4 4 3 2 4 3 5 

H 3 2 1 4 3 2 2 2 2 1 
 

In the case of the distribution of this multiproduct, the total costs incurred were 733 and the vessels 

used / rented to deliver the product amounted to two vessels, Vessel 1 and Vessel 3. Both Vessel 1 and 

Vessel 3 transported two types of products at once. Ship 1 starts to be used when t = 1 by visiting port 

D to load two types of products at once with details Oil-1= 6 and Oil-2= 7. After loading the product, 
Vessel 1 goes to port F to send the product to when t = 2, while Vessel 3 is only used / rented on the 

second day by visiting port E to load the product with details Oil-1= 5 and Oil-2= 9 and immediately 

sent to port G the next day. The ship travel route in this case can be seen in figure 2. 

 

 

 

 

 

 
 

 

 
 

 

 

 

 

 

t=5 t=4 t=3 t=2 t=1 

     Port A       Port C        Port E     Port G          Vessel 1          Vessel 3 

     Port B       Port D        Port F      Port H          Vessel 2          Vessel 4  

Port 

Origin 

Port 

Sink 

 Figure 2. Vessel travel routes 
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6. Conclusion  
In this scientific work it has been shown that the problem of determining the route of product distribution 

by ship, both when single and multi-product, can be seen as a mixed integer programming problem with 

an objective function to minimize ship operating costs. This fee consists of the cost of chartering the 

vessel and the overloading fee which exceeds the minimum part cargo of the vessel and is reduced by 

the return / netback of each delivery per product unit. Maritime Inventory Routing Model Problems in 

this scientific work both when multiproduct products for each optimization case were solved using the 
help of MiniZinc IDE 2.1.5 software with COIN-OR CBC (bundled) solver. 

The number of products shipped will be higher when the product return / netback value is greater than 

the excess charge per product unit, and the operational costs incurred by the company will be smaller. 

In the case of the distribution a single product can also use by this model by making set type of product 

sent is one. 
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